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1|Introduction    

Managers or Decision-Making Units (DMUs) always decide to create appropriate strategies to maximize 

available resources. Limitations of some factors, such as capital and human resources, forced managers to 

think of ways to use these factors optimally. Assessment problems and helping to improve the performance 

of units under the manager's supervision are the most important characteristics of a manager related to 
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Abstract 

In this paper, interior point methods are discussed and analyzed. First, general aspects of Data Envelopment 

Analysis (DEA) are expressed, then the concept of efficiency, CCR and BCC, BCC-CCR, CCR-BCC  models, 

and the reference sets in DEA  models and super-efficiency in ranking are presented. Ellipsoid methods that 

theoretically prove that linear programming problems are efficiently solvable are also used. The result is 

significant since when a problem is solvable, practical and efficient algorithms can be developed. The ellipsoid 

method is not a practical algorithm for solving linear programming problems. Finally, a new category of 

algorithms, known as the interior point optimization method, is introduced, both valuable and efficient. The 

other advantage of the process above is that the complexity of the interior point algorithm is in polynomial order. 

In contrast, the simplex algorithm uses exponential order in the worst cases. This is a good reason to indicate the 

priority of the interior point optimization algorithm compared with the simplex algorithm. Therefore, this point 

justifies using the interior point methods in DEA. 
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  appropriate decisions to guide and promote different units. The complexity of problems, the high amount of 

information, and the effects of external factors on performance are the factors that managers and experts 

cannot be informed of regarding the functionality of units and cannot find an appropriate solution to improve 

efficiency and effectiveness. On the other hand, since efficiency is one of the main criteria, we use the Data 

Envelopment Analysis (DEA) model to evaluate units' performance. This technique was introduced through 

the CCR model by Charnes Cooper e in [1]. They aimed to measure the performance of units under the 

manager's control. Six years later, Banker et al. [2] introduced the BCC model. After that, the non-radial FDH 

models and were designed, and the target was to obtain an approximation of the production function to assess 

performance and calculate the relative efficiency. Efficiency or having good performance in one unit is a 

function of internal factors and indicators of organization. On the other hand, the effectiveness of a unit is a 

function of external organizational factors. However, managers' primary goal is to maximize available 

resources to achieve the best results and obtain the best results with maximum use of existing resources, 

which is called productivity. 

2|Literature Review 

2.1|Efficiency 

Efficiency means doing things right to achieve the company's goals, while effectiveness means doing the right 

things where the actual output meets the plan. DMU means the unit that's been able to receive the input 

vector like. 

Create output vector-like: 

If, for a decision maker unit, outputs include all prices while input be all expenses, then we can calculate 

efficiency through the following formula: 

where ur is the price of  r the r = (1, … , ) output, and vi is the expense of ii,, i = 1, … , m the input? Consider 

a set of n DMUs that the inputs and outputs vectors for DMUj are respectively. Assume that all the input and 

output vectors for each DMU are nonnegative and are not equal to zero. 

Consider the points below for proper evaluation of efficiency under the existing DMUs: 

I. All the inputs and outputs of DMUs must be congruent. 

II. All inputs and outputs should be collected at a special time or independent of time. 

III. The output of each unit should only be dependent on its defined inputs. 

IV. n ≥ 3(m + s), we obtained experimentally.  

By solving the following model: 

(y , y ,..., y ),s1 2
(x ,x ,...,x ).m1 2

  

x1, x2, … , xm, 

y1, y2, … , y𝑠, 

=
u1y1 + ⋯ + usys

v1x1 + ⋯ + vmxm
 , 

 

Y (y ,y ,...,y ),X (x ,x ,...,x ).
2j 1j sj j 1j 2j mj

   
 

.

minθ

s.t.     (θX Y )  T  p p c
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According to the membership conditions Ts, the following model can be obtained, which is called an 

Envelopment form of the CCR model in the input orientation model: 

If the optimum answer for the above model *θ 1 , DMUP is inefficient, *θ 1 , DMUP it is located on the 

efficient boundary.  

In addition, the Model (1) is always feasible because λj = 0, λp = 1, θ = 1, (j = p, j = 1, … , n) are the feasible 

answer to this problem; therefore θ∗ ≤ 1, every feasible answer θ is always positive.  

Dual of Model (1), which is called the multiplier form of the CCR model in input orientation, is: 

Considering the point that envelopment form is always feasible and finite, then the Model (2) is always feasible 

and  u′Yp ≤ 1.  

In the above models, if DMUp
something is inefficient, we put it on the border by reducing the input to make 

it efficient. 

A new input means *θ Xp
 some values that can be produced Yp and *(1 θ )Xp  are some wasted inputs and 

called the amount of inefficiency. 

According to the above definition, the Model (3) indicates the envelop form of CCR in the output orientation: 

Based on a similar discussion, the model above is feasible. The envelop form of CCR in the input orientation 

is 

,

,

min  θ,

n
s.t.    λ X θX  pj jj 1

n
       λ Y Ypj jj 1

       λ 0.
j









 
(1) 

t
,

t

max    u Yp

t
s.t.       v X 1,p

t
            u Y v X 0, j 1,..., n,

j j

            v 0,

            u 0.



  





 (2) 

,

,

max    φ,

n
s.t.      λ X X  pj jj 1

n
          λ Y φYpj jj 1

         λ 0.
j









 (3) 
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In the above model, if *θ 1  then DMUp
is inefficient, but if *θ 1,  then there are two conditions as follows: 

Definition 1. If in the enveloped form of CCR in input orientation *θ 1  and all optimized solutions, the 

auxiliary variable values equal zero, then DMUp
it is strong efficient or Pareto. 

Definition 2. If in envelop form of CCR in input orientation *θ 1  and some optimized solutions, at least 

one of the auxiliary variable values is not equal to zero, then DMUp
it is weak efficient.  

Definition 3. In the above models, when *θ 1 , DMUp
 radial efficiency is present, this efficiency can be weak 

or strong.  

Definition 4. The amount *θ in the CCR envelope model used to evaluat DMUp
e the technical efficiency of 

decision-makers *(1 θ )  is called technical inefficiency.  

DEA provides a theoretical framework for performance analysis and efficiency measurement [3]. This model 

includes sets of linear programming techniques that create the efficient boundary by using the observed data 

and then evaluating and measuring the decision-maker unit [4], [5]. 

Unlike many conventional models in microeconomic theory, the DEA model can have multiple inputs and 

outputs. Moreover, it doesn't need information about the prices of goods and services. 

2.2|Interior Point Methods 

Interior point methods (also referred to as barrier methods) are a class of algorithms for solving linear and 

nonlinear convex optimization problems [6], [7]. They were inspired by Karmarkar's algorithm, developed by 

Karmarkar [8] in 1984 for linear programming. 

Contrary to the simplex method, it reaches an optimal solution by traversing the interior of the feasible region 

[9]. Any convex optimization problem can be transformed into minimizing (or maximizing) a linear function 

over a convex set. The idea of encoding the feasible set using a barrier and designing barrier methods was 

studied in the early 1960s by, amongst others, and Fiacco et al. [10]. These ideas were mainly developed for 

general nonlinear programming [11]. Still, they were later abandoned due to the presence of more competitive 

methods for this class of problems (e.g., sequential quadratic programming) [12]. 

min   θ,

n
s.t.      λ X s X θ,i 1,..., m,  

j j i ipj 1

n
+

          λ Y s Y , r 1,...,s,r rpj jj 1

          λ 0, j 1,..., n,
j

          s 0, i 1,...,m,
i

+
         s 0, r 1,...,s.r


  



  


 


 

 

  

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Convex_optimization
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Nonlinear_programming
http://en.wikipedia.org/wiki/Sequential_quadratic_programming
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To understand the key concepts of the interior point approaches, they are divided into three major categories, 

and the geometry of each is discussed: 

Fig. 1. The key concepts of the interior point approaches. 

 

Affine scale methods  

This is the simplest interior point algorithm. It is simple and also has exemplary practical implementation. In 

some ways, it is closely related to the simplex method. If this algorithm starts from the nearest vertex point, 

it moves approximately along the edges of the feasible set. 

Potential-reduction methods 

This algorithm is in the second category of interior point methods [13]. Instead of improving the optimality 

by decreasing the objective function value, we do that by reducing the value of a nonlinear potential function. 

The potential function follows these two objectives:  

I. Reducing the amount of target. 

II. To stay away from the border of feasible set.  

This algorithm has polynomial complexity.  

Path-following algorithms  

The path-following algorithm contains three key ingredients in its loop: The predictor, the corrector, and the 

step size control. For the predictor step, there are three commonly used predictors: The tangent (or Euler) 

predictor, the secant predictor, and the Cubic (or Hermite) predictor, each of which has its own merit. 

Infeasible primal-dual interior point methods  

An example of the algorithm path-following is available, which has been proven in practice and is very 

successful. This method starts a starting point P ,s 0,x 0   that is not required to be feasible for primal or 

dual, i.e Ax b A P s c   [14]. 

This algorithm is also standard, like Primal-Dual path-following. The direction of Newton k k kd (d ,d ,d )x p s  is 

precisely similar to the previous condition and can be calculated by solving the following system: 

It has been proven that the above method is convergent to an optimized answer and has exemplary practical 

implementation.  

.

k kd Ax bxA 0 0
k k k0 A I d A P s cp

S 0 X kk X S e μ ek k d k ks

   
     
     
     
     
      

   



    


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  2.3|Comparison of Interior-Point Methods Versus Simplex Algorithms 

The current opinion is that the efficiency of exemplary implementations of simplex-based and interior point 

methods is similar to routine linear programming applications [15–18]. However, for specific LP problems, 

one kind of solver is better than another (sometimes much better) [19]. Later, the experimental result will 

show that the interior point method for large-scale linear programming problems is more accurate than the 

simplex method [20]. In contrast, if we want to compare the simplex method with Karmarkar's (interior point 

method) in the runtime aspect, we can observe that neither is faster than the other in all problems [21], [22]. 

The practical efficiency of both methods depends strongly on the details of their implementation. On the 

other hand, the number of iterations required by Karmarkar’s method is typically between 10 and 100, while 

the Simplex method needs 2n − 3n iterations, where n is the number of primal variables. 

Thus, we can discuss later that the IPMs (interior point methods) are generally better for large-scale problems. 

Algorithm 

Kojima et al. [13] constructed the first primal-dual interior-point method for linear programming based on 

the work of Megiddo [23], [24]. The following general framework captures the essence of this algorithm and 

contains the majority of the primal-dual interior-point methods that can be found in the literature. 

Algorithm 1. Generic Kojima et al. [24] primal-dual algorithm. 

Given a strictly feasible point (x°, y°, z°). For k = 0,1,2,..., do: 

I. Choose kσ (0,1] and set k k k T kμ σ (x ) z / n . 

II. Solve the following system k k k(Δx ,Δy ,Δz ) : 

III. Choose kT  (0,1) and compute the step length  k k kˆσ Min 1,T α , where: 

IV. From the new iterate: 

2.4|Numerical Experience 

This section discusses the numerical results obtained using the information mentioned algorithm for DEA 

problems. 

Our performed experiment used a code implemented in MATLAB for large-scale data. The case study is one 

of the branches of MELAT bank in Iran. Using the interior point algorithm, 1928 MELAT bank branches 

have been assessed for the performance of DMUs. These DMUs contain 3 inputs and 9 outposts in which 

the inputs are: 

I. 
1I personnel score. 

II. 
2I  margin.  

III. 
3I  and, claims respectively. 

The outputs are:  

k k k k k k k

Δx 0

F (x , y ,z ) Δy F(x , y ,z ) μ 0 .

Δz 0

   
   

      
   
   

  

 
k

k 1 k k 1 k

1
α̂ .

Min (X ) Δx ,(Z ) Δz 


   

 k 1 k 1 k 1 k k k k k k k(x , y ,z ) x , y ,z α (Δx ,Δy ,Δz ).       
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I. 

1O : Facilities. 

II. 
2O : The total amount of four deposits. 

III. 
3O : Long-term deposit. 

IV. 
4O : Current deposit. 

V. 
5O : Loan deposit. 

VI. 
6O : Short-term deposit. 

VII. 
7O : Received interest. 

VIII. 
8O : Received commission. 

IX. 
9O : Other resources. 

The starting point is not necessarily feasible. The code generates a sequence of iterates that approach feasibility 

and drive the gap to zero. We say that a problem is solved to an accuracy of 10m for some positive integer m 

if the algorithm is terminated when: 

In this study, all the problems were solved to an accuracy of 10^8. The algorithm stops when the problem is 

solved to the given accuracy or when the number of iterations equals 200. 

We used SeDuMi 1.05, an add-on for MATLAB that lets you solve optimization problems with linear, 

quadratic, and semi-definiteness constraints [25]. The reason for using Sedumi is that this toolbox can 

efficiently solve large-scale optimization problems by exploiting sparsity.  

Our model is a CCR Input Oriented model: 

We can standard the model by adding Slack variable: 

Therefore, our model is: LP:  

k T k k k kt k T k

m1 1 2

TT k k k

1 1 1

Ax b A y z c X z ec x b y
max ( , , , ) 10 .

1 x x z / n1 b y 1 y z


   


  

  

,

min  θ,

n
s.t.    λ X θX  p,j jj 1

n
       λ Y Ypj jj 1

       λ 0.
j









 
 

min   θ,

n
s.t.      λ X s X θ,i 1,...,m,  

j j i ipj 1

n
+          λ Y s Y ,r 1,...,s,r rpj jj 1

          λ 0, j 1,...,n,
j

          s 0,i 1,...,m,
i
+         s 0,r 1,...,s.r

  


  


 

  

 
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The result of assessing for DMU= 1 is gathered in Table 1: 

Table 1. The result of assessing 

for DMU= 1. 

 

 

  

 

 

 

For other rows, the *λ 0 . 

The other information is gathered in Table 2. 

Table 2. No caption. 

 

 

 

 

 

 

 

 

,

,

9.55λ 13.76λ .... 8.25λ
1 2 1923

4.45λ 6.24λ 4.51λ θx
1924 1926 1927 1p

1441049759λ 1223216971λ ....   
1 2

842550647λ 469974998λ θx  
1926 1927 2p

242470622λ 321087157λ ....  
1 2

12 Constarins: 170694174λ 9838700λ
1926

   

  

  

 

  

 ,

,

.

θx
1927 3p

51607712527λ 1.0658E 11λ ....
1 2

16708693165λ 20827421921λ Y
1926 1927 1p

. . .

. . .

. . .

189820238λ 187178954λ ....
1 2

32752670λ 28477102λ Y
1926 1927 9p

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 












 



   

 

  

 














 

 

Rows *
λ  

λ 630 3.0538 

λ 831 1.3000 

λ 836 0.5040 

λ 1547 1.7611 

λ 1720 0.0361 

λ 1929 0.5792 

λ 1934 0.0521 

λ 1936 0.0507 

λ 1937 0.0014 

λ 1940 0.0001 

Input Right-Hand Side Output Right-Hand Side Primal Solution Dual Solution 

0     0.0107 0.0750 3.5614e-008 
0     0.0067  
0     0.0013 
     0.0020 

    0.0013 
    0.0021 
    0.0003 
    0.0000 
    0.0001 

Iter seconds digits c*x, b*y 
25, 0.8, Inf  5.7917206034e-001, 5.7982122630e-001. 
|Ax-b|= 1.1e-005, [Ay-c] _+ =  2.9E-017, |x|= 3.8e+000, |y|= 7.9e+003. 
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 Table 3 shows the result of the assessment for DMU= 100, 500, 1900. 

Table 3. For DMU= 100, 500, 1900. 

 

 

 

 

 

 

 

 

 

 

 

 

For other rows, the *λ 0 . The other information is gathered in Table 4. For DMU= 100.  

Table 4. For DMU= 100. 

 

 

 

 

 

 

 

 

Table 5. For DMU=500. 

 

 

 

 

 

 

 

 

Rows DMU=500 DMU=100 DMU=1900 

λ 364 7.9749 0.2669 0 

λ 630 0 0.363 2.0557 

λ 831 0 0 1.2244 

λ 836 5.8765 0.5668 0 

λ 983 0.2353 0.245 0 

λ 1455 0 0 0.9312 

λ 1547 0 0 2.7475 

λ 1720 0.0098 0 0 

λ  1929 0.3598 0.3633 0.6511 

λ 1932 0.0003 0.0002 0 

λ 1934 0.0047 0.006 0.04 

λ 1936 0.0004 0.0058 0.0376 

λ 1937 0.0042 0.0002 0.0024 

Input Right-Hand Side Output Right-Hand Side Primal Solution Dual Solution 

0 0.0049 0.0750   2.5060e-007 
0 0.0040  
0 0.0008 
 0.0006 

0.0012 
0.0015 
0.0000 
0.0000 
0.0000 

Iter seconds digits c*x, b*y 
 25, 0.8.   Inf  3.6325708088e-001,  3.6325708120e-001 
|Ax-b|= 6.2e-010, [Ay-c]_+ =  0.0E+000, |x|= 8.5e-001, |y|= 1.3e+004 

Input Right-Hand Side Output Right-Hand Side Primal Solution Dual Solution 

0 0.0357 0.0357 0.0357 
0 0.0165  
0 0.0074 
 0.0036 

0.0010 
0.0045 
0.0002 
0.0000 
0.0000 

Iter seconds digits c*x, b*y. 
 26, 0.8, Inf  3.5976135603e-001,  3.5976135620e-001 
|Ax-b| = 3.4e-010, [Ay-c]_+ =  8.0E-012, |x|= 9.9e+000, |y|= 2.2e+003 



Interior points algorithms in data envelopment analysis (Case study: An Iranian bank) 

 

10

 

  Table 6. For DMU=1900. 

 

 

 

 

 

 

 

 

3|Conclusion 

Interior point methods have a significant advantage in practically implementing linear programming. 

However, better detection performance of simplex or interior point methods depends on problems and 

samples. But some factors are:  

I. The simplex method is not good on significant problems, especially problems with degenerate solutions, 

while the interior point method is different. Therefore, it is expected that when the problem has a 

degenerate solution, the interior point method will act better than the simplex algorithm. 

II. The most important step in calculating an interior point method is to solve the following system: 

III. Since the degenerate is automatically too high in DEA, we expect the interior point method to act better 

than the simplex method.  

IV. The following path algorithm is the category of interior point algorithm, which has the best time from the 

point of complexity and has interesting geometric properties. Some of the issues that will be discussed in 

the future are:  

 Reducing the solving time of heavy problems in DEA using interior point optimization algorithm. 

 Analyzing DEA models in GAMS, MATLAB, and SEDUMI (plugging in MATLAB) and expressing the 

advantages and disadvantages of this software. 
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