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1|Introduction    

In evaluating Decision Making Units (DMUs) using the Data Envelopment Analysis (DEA) technique, 

initially proposed by Charnes et al. [1], DMUs are classified successfully into efficient DMUs and inefficient 

DMUs. Efficient DMUs are identified by an efficiency score equal to 1, and inefficient DMUs have efficiency 

scores less than one. Although efficiency score can be a criterion for ranking inefficient DMUs, this criterion 
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cannot rank efficient DMUs. In such cases, it is very important to have a tool to discriminate between the 

efficient DMUs and rank them. That is why many types of research for ranking the efficient units were 

published in DEA literature, and many models were formulated. Sexton et al. [2] first proposed the cross-

efficiency method to rank efficient DMUs in this area. After that, a great variety of ranking methods for more 

details [3], [4]. 

With different properties have been proposed, e.g., super efficiency technique, Benchmark method, ranking 

by l1-norm, tchebycheff norm and l2-norm, ranking by common set of weights, monte carlo method, ranking 

by using TOPSIS method, and so on, to rank DMUs [5–15]. However, each has advantages and disadvantages 

that can be used in a specific area according to these features. Hence, none could completely solve the ranking 

problem and be selected as the best methodology. 

This paper presents a new ranking method based on system-wide efficiency that differs utterly from existing 

ranking methods. In our framework, firstly, using the directional distance function, a recent concept due to 

Luenberger [16], [17] and Chambers et al. [18], [19], we will extend a so-called Directional Slack-Based 

Measure (DSBM) of efficiency where the Enhanced Russell Measure (ERM) and Slack-Based Measure (SBM) 

are special cases of it [20], [21]. 

Secondly, using this measure, we will develop a so-called System-wide Directional Slack-Based Measure 

(SDSBM) that is a generalization of the approach presented by Cooper et al. [22]. Finally, our work leads to 

a ranking index based on the influence of the individual DMUs’ performances on the system-wide 

performance. 

Therefore, in contrast to the traditional ranking models that compare DMUs with the best performances 

(Pessimistic) or the worst performances (Optimistic), our method implicitly compares DMUs with both the 

best and worst performances. Furthermore, our proposed method has many desirable properties and 

advantages; some problematic areas in ranking efficient DMUs, e.g., infeasibility and instability in the super-

efficiency technique, do not occur. 

The remainder of this paper unfolds as follows. In the next section, we introduce the DSBM of efficiency 

and provide a detailed discussion about the properties and features of this measure. Further, employing it, we 

generalize the approach Cooper et al. [23] presented and develop a DSBM of system-wide efficiency. 

In Section 3, we present our ranking approach and talk about its methodology and properties. In Section 4, 

by introducing two illustrative examples, the proposed method is compared with other ranking methods. 

Finally, concluding remarks and the directions for future research are collected in the last section. 

2|Aggregation in Data Envelopment Analysis with Directional 

Slack-Based Measure of Efficiency 

This section presents a new DSBM of efficiency and then discusses its properties. Next, we review concepts 

and the model for system-wide efficiency measurement in DEA, proposed by Cooper et al. [23]. Finally, we 

employ the DSBM to develop a new SDSBM. 

2.1|Directional Slack-Based Measure of Efficiency 

Throughout this paper, we deal with n  DMUs with m inputs  i 1,...,m and s outputs  r 1,...,s . The input 

and output vectors of 
jDMU  j 1,...,n , are 

and where 
jx 0 , 

jx 0 , 
jy 0  and 

jy 0 . The Production Possibility Set (PPS), T, is the set of all feasible 

input and output vectors, and it is defined as follows: 

 
T

j 1j mjx x ,..., x ,  
T

j 1j sjy y ,..., y ,   
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Charnes et al. [1] have deduced the following unique PPS, constructed from a set of n observed DMUs, 

considering the inclusion of observations, convexity, ray unboundedness, and free disposability of inputs and 

outputs postulates. This set is denoted by 
cT the prevalence of the production technology's constant returns 

to scale assumption. 

For our purpose, we specifically use the directional distance function concept. The directional distance 

function, recently introduced by Chambers et al. [18], [19] is a version of Luenberger’s shortage function, 

which generalizes the traditional Shephard distance function and plays a significant role in production theory 

and is well-suited to the task of providing a measure of technical efficiency in the whole input-output space 

[16], [17], [24]. 

Considering the structure of
cT , if the direction vector  g g ,g   has been selected such that  

E.g., one can apply the following direction vectors: 

then the DEA formulation of DSBM relative to Eq. (2) is as follows: 

The vector  g g ,g   represents the pre-assigned direction vector along which
oDMU , if it is an interior 

point, it is projected onto the efficient frontier of the PPS. Here 
iβ

rβ , it means the rates of contraction and 

expansion in the ith input and rth output 
oDMU it has projected onto the efficient frontier of

cT  the direction

g.  Furthermore, the objective Eq. (6) jointly maximizes the values of 
iβ  i 1,...,m ,

rβ  r 1,...,s and. Since 

It is a feasible solution of this model, always oe 1 . In addition, since 

  T x, y :  x can produce y .  (1) 

 
n n

c j j j j j

j 1 j 1

T x, y x λ x ,  y λ y ,  λ 0,  j 1,2,...,n .
 

  
     
  

   (2) 

ij

i
i

x
Max 1,  j 1,...,n,

g

 
  

 
 (3) 

i io r rog x ,  g y ,  for all i,r,    (4) 

   ii ij r rjr
j j

g x Max x ,  g y Max y ,  for all i, r,      (5) 

m

i

i 1
o o s

r

r 1

n

j ij io i i

j 1

n

j rj ro r r

j 1

i

1
1 β

m
e Min   E ,

1
1 β

s

        s.t.     λ x x β g ,      i 1,...,m,

                  λ y y β g ,      r 1,...,s,

                  β 0,  i 1,...,m,

                  β









 



 







 



  

  

 









r

j

0,  r 1,...,s,

                  λ 0,    j 1,...,n.

  

 

 (6) 

 jλ 0,  for all j, i rj o,  β β 0,  for all i,  r .      
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Therefore, according to Model (3), 
o0 e 1  oe it can be interpreted as an efficiency measure. The optimal 

value of Eq. (4) 
oe  is the efficiency score of 

oDMU , and based on it, we determine a DMU as being DSBM-

efficient as follows: 

Definition 1.
oDMU  is said to be DSBM-efficient if and only if

oe 1 . 

This condition is equivalent to * *

i rβ β 0   , for all i, r , in each optimal Solution of Eq. (6), i.e., there is no 

input inefficiency (Waste) and no output inefficiency (Shortfall) in all inputs and outputs in any optimal 

solution. 

Remark 1. The ERM and SBM models are special cases of Model (6). After assigning the direction Vector (7), 

if we put 
i iθ 1 β   , 

r rφ 1 β   , for all i , r , ERM is derived, and if we put 
i i ios β x  , 

r r ros β y  , for all i,  

r,  SBM is derived. 

Theorem 1. 
oDMU  is DSBM-efficient (By assigning any positive direction vector) if and only if it is ERM-

efficient. 

Proof: This is obvious. By allocating a suitable direction vector, DSBM will have many attractive properties 

that we outline as follows: 

Computational aspect 

This model is a fractional programming problem. However, it can be transformed into a linear program 

utilizing the Charnes–Cooper transformation, similar to the ERM model [25]. Moreover, due to their 

equivalency, we can generate an optimal solution for the corresponding DSBM model from an optimal 

solution of the LP form. 

Completeness 

This measure is ‘complete’ in that it is non-oriented, contrasting with oriented measures. It considers all 

inefficiencies associated with non-zero slacks that the model may identify. Therefore, further discrimination 

is obtained because of a non-radial movement toward the efficient frontier. 

Unit invariance 

This model will be unit invariant by selecting a direction vector such that the ith component
ig  i 1,...,m  

and ith component 
rg  r 1,...,s  have the same units of measurement as the ith input and rth output. The same 

values 
oe will be obtained with any unit of measure employed for inputs and outputs. For instance, the 

direction Vectors (5) and (6) satisfy this condition. 

Monotonicity 

The measure is strictly monotone, decreasing in each 
iβ

rβ . 

Decision maker’s preferences incorporation 

In some practical cases, if the Decision Maker (DM) does not prefer the efficient units equally, it is necessary 

to consider the DM's judgments or a priori knowledge. A remarkable property of Model (6) is that by choosing 

a suitable direction vector, g, the DM’s preference information can be explicitly considered account. In this 

way, unrealistic weighting schemes that might be used by the DMUs are eliminated, and, therefore, the target 

obtained will be more meaningful than the usual target obtained for conventional DEA models. 

We can flexibly modify vectors according to the preference orders of inputs/outputs given by DM g . Indeed, 

the values of the modified direction vector g 's components describe the relative importance of 

io i ix β g 0,    i 1,...,m , io
i

i

x
β ,

g




  i 1,...,m .   
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  inputs/outputs given by DM. Let the non-zero weights
iw (i 1,...,m) rv (r 1,...,s)  be associated with the 

priorities DM gives to the inputs and outputs, respectively, such that the larger the
iw (

rv ), the more 

important the ith input (rth output) is. After incorporating these weights in Eq. (6), the coefficient of variables 

iβ

rβ and the objective function will be 
iw , rv and, respectively. Therefore, the components of the modified 

direction vector g  should be 

where 

This shows that if an input (output) is of greater importance, it should be attached to a larger weight or, 

equivalently, a small direction component. By considering Eq. (3), we must have 
iξ 1 i 1,...,m equivalently

iw 1 , r 1,...,s 1 We will elaborate on this in Section 7. 

Flexibility in computer programming 

Another advantage of this model is that we only need to change the direction vector's inputs in this program 

by writing its computer code to achieve new efficiency scores concerning the new direction. Furthermore, 

running this program for some directions can calculate the average obtained scores as a final score for a given 

DMU. 

Extension to hybrid models 

One can extend the proposed model to its hybrid form [22]. 

Extension to models with arbitrary returns to scale 

By adding the constraint 

To the constraints of this model, one can easily exert the relaxed convexity condition for different types of 

returns to scale to them. For instance, if L U 1  the corresponding PPS is satisfied in variable returns to 

scale assumption, in the following subsection, we will employ Model (6) to provide a directional distance-based 

model for measuring system-wide efficiency. 

2.2|A Generalized System-Wide Performance Measure in Data Envelopment 

Analysis 

First, we consider the collection of n observed DMUs as a system,  T Tx , y where 

and 

                       

1 If the given weights do not satisfy these conditions, their 

normalized (dividing by  iMax w : i 1,...,m ) form will 

fulfill them. 

i i ig ξ g ,   r r rg ψ g ,     

i

i

1
ξ ,

w
 r

r

1
ψ .

v
   

n

j

j 1
j o

L λ U,



   ( 0 L 1  , 1 U  ).  

n

iT ij

j 1

x x ,  i 1,...,m,


    
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Th
iTx rTy ey are the sums of the individual DMUs inputs and outputs, respectively. Cooper et al. [22] 

proposed the following DEA model to measure the system-wide performance: 

They proved that 
Tλ  its coefficients can be deleted in Eq. (7). 

Similar to Model (6), if the direction vector  g g ,g   has been selected such that 

Then, the mathematical programming of the SDSBM is as follows: 

Through Eq. (8), we observe that 
T0 e 1  it

Te  can be interpreted as a system-wide efficiency measure. For 

example, one can apply the following direction vectors: 

n

rT rj

j 1

y y ,  r 1,...,s.


    

m

iT

i 1
T s

rT

r 1

n

j ij T iT iT iT

j 1

n

j rj T rT rT rT

j 1

iT

rT

1
δ

m
ρ Min ,

1
η

s

        s.t. λ x λ x δ x ,         i 1,...,m,

       λ y λ y η y ,       r 1,...,s,

                  0 δ 1,  i 1,...,m,  

                  η 1,       r 1,











  

  

  

 









T j

...,s,

                  λ 0,  λ 0,   j 1,2,...,n.  

 (7) 

iT

i
i

x
Max 1.

g

 
 

 
 (8) 

m

i

i 1
T T s

r

r 1

n

j ij T iT iT i i

j 1

n

j rj T rT rT r i

j 1

i

r

1
1 β

m
e Min E ,

1
1 β

s

        s.t. μ x μ x x β g ,         i 1,...,m,

       μ y μ y y β g ,       r 1,...,s,

                  β 0,  i 1,...,m,

                  β









 



 









 



   

   

 











T j

0,  r 1,...,s,

                  μ 0,  μ 0,   j 1,2,...,n.



  

 (9) 

i iT r rTg x ,  g y ,  ,  for all i,r,    (10) 

   ii ij r rjr
j j

g nx n Max x ,  g ny n Max y ,  for all i, r.        (11) 
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  If we assign the direction Eq. (10), we will have the Model (7). SDSBM inherently has the properties of the 

Model (6). Another desirable property is that we can use the same direction vector to self-evaluate each system 

and compare their performances. 

The above model is always feasible, and the optimal objective of Eq. (9) 
Te  is the efficiency score for the 

under-evaluation system  T Tx , y , and the ‘efficiency’ of the system is introduced as follows. 

Definition 2. The system  T Tx , y  is said to be efficient if and only if
Te 1 . Similar to Theorem 1 and 2 in 

Cooper et al. [22], we have the following theorems: 

Theorem 2 (Alternate optima theorem). The system is efficient if and only if the following solutions 

constitute alternate optima: 1) *

Tμ 1  in Eq. (9) with all *

jμ 0  and 2) *

jμ 0  j 1,...,n , and *

Tμ 0 . 

Theorem 3. If the system is inefficient, then *

Tμ 0 in all optimum solutions. 

Considering the above theorems, either system is efficient or inefficient; Model (9) always has an optimal 

solution *

Tλ 0 . Therefore, we can eliminate Tλ its coefficients in Eq. (9) and, therefore, use the following 

equivalent form to measure the system-wide efficiency: 

Regarding the relation between Te  and Tρ , it can be easily proved that Te 0 if and only if Tρ 0 . 

3|Our Proposed Ranking Method 

In this section, based on the influences of the individual DMU's performances on the total system-wide 

performance, we propose a method for ranking all efficient DMUs. The main idea behind our proposed 

ranking method is that to rank a given efficient DMU, this unit is excluded from the system, and a new system 

is made. Then, the performance of the new system is measured. 

As we will demonstrate, this exclusion results in the improvement of system efficiency. This is done for all 

efficient DMUs. Then, all efficient DMUs are ranked based on the corresponding new system efficiencies. 

Our ranking criterion is: The more omission of a unit improves the system-wide performance, the better the 

corresponding unit performs. 

3.1|Our Proposed Ranking Method 

Because the presence of an efficient aDMU causes the inefficiency of inefficient DMUs, omitting this unit 

may convert some of the inefficient DMUs into efficient DMUs or reduce the inefficiency of the inefficient 

DMUs (see Fig. 1). Finally, it increases the efficiency of the new system. Consequently, the more the system 

efficiency increases, the better aDMU it performs. 

m

i

i 1
T s

r

r 1

n

j ij iT i i

j 1

n

j rj rT r i

j 1

i

r

j

1
1 τ

m
e Min ρ ,

1
1 τ

s

 s.t. μ x x τ g ,         i 1,...,m,

μ y y τ g ,       r 1,...,s,

          τ 0,  i 1,...,m,

          τ 0,  r 1,...,s,

          τ 0,   j 1,2,...,n.









 



 









 



  

  

 

 

 









 (12) 
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For ranking an efficient unit, aDMU it is first excluded from the set of all observed DMUs, and all remaining 

DMUs are considered a new system (see Fig. 1).  

 

Fig. 1. The original system (Before excluding DMUa) and the new system (After 

excluding DMUo ). 

Secondly, to perform our approach, we evaluate the new system,  a aT T
x , y with input values a

m

ijiT
j 1
j a

x x





i 1,...,m and output values a

s

rjrT
j 1
j a

y y ,



 r 1,...,s , by Model (13). 

It should be noted that the direction vectors assigned to Models (12) and (13) in evaluating the original and the 

new systems are the same. Therefore, both systems are compared using the same criteria, and the obtained 

targets are more meaningful. 

However, if we use Model (7) to evaluate these systems, the original and new systems will be assessed in two 

different directions  T Tx , y ,  a aT T
x , y , which is unreasonable. 

Therefore, an advantage of SDSBM over Eq. (7) is that several systems can be compared concerning the same 

criterion. Regarding the relationship between Te  and aT
e , we have the following theorem: 

Theorem 4. The optimal objective value of Model (13) in evaluating the new system aT
e  is not less than that 

of the original system, Te aT T
e e i.e. 

Proof: Suppose that we have evaluated the new system  a aT T
x , y  by Model (13), and we have the following 

optimal solution: 

a a

a

a

m

i

i 1

sT T

r

r 1

n

j ij i iiT
j 1
j a

n

j rj r irT
j 1
j a

i

r

1
1 τ

m
e Min E ,

1
1 τ

s

         s.t. μ x x τ g ,         i 1,...,m,

        μ y y τ g ,       r 1,...,s,

                  τ 0,  i 1,...,m,

                  τ









 




 










 



  

  

 











j

0,  r 1,...,s,

                  τ 0,   j 1,2,...,n,  j a.



  

 (13) 
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Moreover, we evaluated the efficient unit  a a aDMU x , y using the Model (6). Then, there exists some optimal 

solution of this model as follows: 

where 

From Eqs. (14) and (15), we have 

So, 

Model (12) is a feasible solution for evaluating the original system. Therefore, the result is obtained. As 

anticipated, the above proof shows that excluding an efficient DMU will not worsen the new system's 

performance.  

To illustrate our proposed method, consider the PPS in Fig. 2 part (a), which consists of five DMUs: A, B, C, 

D, E, and F. Units A, B, and C are ERM-efficient, and units D, E, and F are ERM-inefficient. 

Only unit D becomes efficient after excluding unit A, as shown in part (b). Units D and E become efficient 

after excluding unit B, as shown in part (c). However, by removing unit C, as shown in part (d), none of the 

inefficient DMUs will become efficient.  

Therefore, among the efficient DMUs (A, B, and C), excluding units B and C from the observed DMUs 

causes the most significant and minor increase in the system-wide efficiency, respectively. Thus, units B and 

C are the best and worst performers among all efficient DMUs. In other words, the efficient units B and C 

have more and less influence on the system performance. 

 

 

 

 

 

a

a

n

*

j ij iiT
j 1

j a

n

*

j rj rrT
j 1

j a

*

i

*

r

μ x x τ g ,       i 1,...,m,     

μ y y τ g ,      r 1,...,s.

















  

 





 (14) 

n

*

j ij ia

j 1

n

*

j rj ro

j 1

λ x x ,       i 1,...,m,                   

λ y y ,      r 1,...,s,





 

 





 (15) 

*

a

*

jλ 1,  λ 0,  j 1,...,n,  j a.     (16) 

n

*

j ij iT i

j 1

j a

n

*

j rj rT r

j 1

j a

*

ia i

*

ra r

μ x x τ g ,       i 1,...,m,

μ y y τ g ,     r 1,...,s.

x

y

















  

 



 





 (16) 

 * * *

a j j i i r rτ τ τ τμ 1,  μ μ ,  for all j,  j a,  ,  ,  for all i,  r .             
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a. 

b. 

c. 

d. 

Fig. 2. Excluding units and Farrell frontiers; a. The Farrell 

frontier made up of all DMUs, b. The Farrell frontier after 

excluding unit A, c. The Farrell frontier after excluding unit B, 

and d. The Farrell frontier after excluding unit C. 

 

3.2|Theoretical and Computational Advantages of the Method 

Our proposed approach is entirely different in methodology compared to all existing ranking methods. 

Moreover, it has several desirable properties and advantages and, in some cases, is superior to other methods, 

e.g., super efficiency technique. In the following, we summarize these properties: 
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  Always feasibility 

An advantage of our approach is that it guarantees the generation of feasible solutions for all efficient DMUs 

without any primary assumptions on data, e.g., positivity of data. Infeasibility is a common problem in almost 

all super-efficiency models proposed so far. 

Ranking all extreme and nonextreme efficient DMUs 

In contrast with some existing methods, e.g., the super efficiency technique that only ranks the extreme 

DMUs, our method can rank all efficient (either extreme or nonextreme) DMUs. 

Incorporation of DM’s preferences information into ranking 

A common weakness of conventional ranking methods is that their evaluations are ''value free'' in the sense 

that they do not include DM's preferences. Now, the question arises as to whether this operation has any 

efficacy in ranking orders. In addition, provided the answer is positive, how can we perform it? In example 

Model (2), we will show that the answer is positive, and using the methodology described in the property Model 

(6) of the Model (8), we can do it. 

Completeness 

Model (9) used in our approach is also complete due to the completeness of Model (6). 

4|Illustrative Examples 

This section presents two numerical examples to illustrate the proposed method. By first example, we 

generally compare our proposed method with Cross-Efficiency-Aggressive (CEA), Cross-Efficiency-

Benevolent (CEB), Benchmarking, and super-efficiency (AP model) ranking methods [5]. Using the second 

example, two aims are pursued: 

I. Investigating the influence of taking into account DM's preferences information in ranking 

II. Elaborating the strength of our method in ranking nonextreme efficient DMUs. 

Example 1. The data listed in Table 1 are extracted from Adler et al. [3]. In evaluating efficient DMUs, we 

apply different directions Eqs. (10) and (11). The efficiency scores of the original system corresponding to 

these directions are 0.891 and 0.935, respectively. 

Table 1. DMUs' data (extracted from [3]). 

 

 

 

 

 

DMU scores for several ranking methods are reported in Table 2. The efficiency scores of the new systems 

after excluding corresponding units are given in the first and second columns of Table 2. In both situations, 

excluding units A and B causes the most significant and minor increase in system-wide efficiency; therefore, 

they are characterized as the best and worst DMUs among ERM-efficient DMUs, respectively. In confirming 

our result, all other ranking methods address this point, namely that unit A is the most efficient DMU. 

 Input 1 Input 2 Output 1 Output 2 

A 150 0.2 14000 3500 
B 400 0.7 14000 21000 
C 320 1.2 42000 10500 
D 520 2.0 28000 42000 
E 350 1.2 19000 25000 
F 320 0.7 14000 15000 
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Table 2. DMUs’ scores for several ranking methods. 

 

 

 

 

  

  

 

Example 2. Consider seven DMUs, A, B, ..., and G, that use two inputs to produce two outputs, as in Table 

3. Using these data, we illustrate how our proposed approach can incorporate the DM's preferences 

information in ranking DMUs. Therefore, this approach can provide a ranking order for DMUs based on 

both the PPS's information and the given information by DM. In addition, we show the method's strength 

in ranking nonextreme efficient DMUs. 

Table 3. The data set for Example 2. 

 

  

  

 

 

 

 

Table 4. The results for example 2 before and after 

taking into account DM’s preferences information. 

 

 

 

 

 

 

 

Let the DM’s preferences for 1I 2I 1O 2O and are 1, 0.4, 0.8, and 0.2. According to the Property (7) of Model (6)

   1 2 1 2ξ ,ξ ,ψ ,ψ 1,2.5,1.25,5 . Therefore, to incorporate this information into consideration, the direction 

vector (here we use the direction Eq. (10)) used in Eq. (13) should be modified as follows: 

Table 4 displays the results before and after considering DM's preference information. The results in Table 4 

are exciting. Egregious differences exist between the ranking orders before and after considering DM's 

preference information. For instance, the order of unit B before and after considering DM's preferences 

information is one and five, respectively. Therefore, our experiment emphasizes the importance of 

incorporating DM’s preferences and shows that it may change the ranking orders.  

Our Results 
Using Eq. (9) 

Our Results 
Using Eq. (10) 

ERM CEA CEB Benchmarking AP 

A 0.962 A 0.971 A 1.000 A 0.764 A 1.000 A 1 A 2.000 

D 0.947 D 0.972. B 1.000 B 0.700 D 1.000 B 2 C 1.406 

C 0.941 C 0.962 C 1.000 D 0.700 E 0.974 E 3 B 1.400 

B 0.926 B 0.960 D 1.000 E 0.696 B 0.955 C 4.5 D 1.130 

- - - - E 0.849 C 0.643 C 0.886 D 4.5 E 0.977 

- - - - F 0.741 F 0.608 F 0.847 - - F 0.867 

 I1 I2
 

O1
 

O2 

A
 

3 4 5 3 

B
 

6 3 2 4 

C
 

3 7 3 3 

D 10 3 2 1 

E 1 5 4 5 

F 5 10/3 3 11/3 

G 2 9/2 9/2 4 

 ERM AP Original Weighted 

A
 

1.000 1.250 0.551 0.827 

B 1.000 1.210 0.600 0.815 

C 0.349 0.459 - - 

D 0.252 0.533 - - 

E 1.000 2.500 0.589 0.842 

F 1.000 1.000 0.583 0.819 

G 1.000 1.000 0.539 0.820 

   g 10,7,5,5 g 10,17.5,6.25,25 .    (16) 
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  Furthermore, with the AP model, nonextreme efficient units, F and G, have the same super-efficiency scores 

equal to 1, and it fails to differentiate between them. However, the proposed method successfully ranks these 

units. Therefore, this example demonstrates the superiority of our proposed method in comparison to the 

super-efficiency technique (AP model) from ranking nonextreme efficient DMUs and accuracy points of 

view. 

5|Conclusion 

In this research, we proposed a new ranking methodology for ranking extreme and nonextreme efficient 

DMUs based on system-wide performance. In our framework, using the concept of directional distance 

function, we generalized the approach presented by Cooper et al. [22] and proposed a new SDSBM. The 

SDSBM has many properties and advantages, e.g., the DM’s preference information can be explicitly 

considered account. Using SDSBM and based upon the influence of the individual DMUs' performances on 

the system-wide performance, our ranking method was proposed.  

To recapitulate the main idea behind our ranking method: The more influence (increase) on the system-wide 

performance, the better aDMU performs. Our ranking method has many desirable properties such as 

feasibility, ranking both extreme and nonextreme efficient DMUs, and incorporating DM's preferences 

information into the ranking. The illustrative examples demonstrate the advantages of the proposed method 

in detail. 
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