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Abstract

Optimizing systems based on decision-making criteria across multiple sets requires selecting different stages to
achieve the best efficiency for the analyst's objective. Therefore, advantages and disadvantages must be
considered simultaneously to choose the most effective method. The Hurwicz criterion is an approach that
combines pessimistic and optimistic criteria to achieve optimal efficiency. This method allows for solving more
complex problems in two or multiple stages. In the standardized combined approach within a two-stage Data
Envelopment Analysis (DEA) network, the outputs of the first stage are selected as the inputs of the intermediate
stage, ultimately determining the Most Productive Scale Size (MPSS). By applying the Hurwicz method in both
optimistic and pessimistic scenatios, the best Decision-Making Units (DMUs) are selected for analysis.
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1| Introduction

Data Envelopment Analysis (DEA) is a method that uses mathematical programming to calculate the relative
efficiency of Decision-Making Units (DMUs) with multiple inputs and outputs. It was first introduced by
Charnes et al. [1], and Banker et al. [2] constructed a link between DEA, production estimation, and efficiency
frontiers based on empirical observations. The CCR model is one of the most well-known DEA models,
initially introduced by Charnes et. al [1] to measure the efficiency of a set of DMUs. This model extends
Farrell’s efficiency measurement to a multi-input, multi-output framework and calculates radial efficiency
under Constant Returns to Scale (CRS). The CCR model has two orientations: Input-oriented (Also known
as the envelopment form) and output-oriented (Also known as the multiplier form). In DEA, returns to scale
refer to the highest level of productivity, which is considered the efficient unit. Moreover, the highest
productivity level, or the efficient unit, is closely related to the concept of CRS introduced by Banker [2] in
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DEA. Banker et al. [3] further explored the highest level of productivity as part of the literature on returns to
scale. However, all these scientific studies have evaluated DEA from an optimistic point of view. The
performance of DMUs can also be assessed from a pessimistic point of view, which may be a more interesting
category. Studies on pessimistic efficiency measurement in DEA can be found in the research of Wang et al.
[4], and Wang and Lan [5]. Chen et al. [6] analyzed efficiency scores to predict the efficiency frontier of a two-
stage network DEA model. They concluded that the discrepancy between the efficiency frontier produced by
the base model and the expected frontier produced is due to synergy effects with Variable Returns to Scale
(VRS) across different stages.

Terry et al. [7] proposed a two-stage network for evaluating transit services in sub-Saharan African cities. In
the first stage, they calculated efficiency and effectiveness scores with a specific bias. In the second stage, they
adjusted efficiency scotres based on bias correction against service and operational indices. Their findings
indicate that units with higher capacity, in terms of vehicle kilometers traveled and daily ridership, are more
efficient than units with lower capacity. Zhang et al. [8] investigated exogenous constraints on two-stage DEA
models. They found that a fixed-sum output constraint, as an exogenous factor, affects efficiency scores in
cooperative game theory based on centralized models and subjective global models they presented. Dar et al.
[9] evaluated the efficiency and determinants of public health in India using a two-stage network DEA
approach. They found that more than one-third of public healthcare services in India are inefficient. Their
study concluded that socio-economic factors impact healthcare efficiency more than medical factors in India.

Since efficient units' performance may vary depending on different evaluation perspectives, applying double
frontiers and the Hurwicz criterion allows for a more comprehensive assessment of each unit. Double
frontiers efficiently capture both the optimistic and pessimistic performances of a decision-making unit,

making it a more holistic approach than traditional methods.

In Section 2, the Hurwicz method is briefly discussed. Section 3 introduces a proposed approach combining
a two-stage DEA network with the Hurwicz method to develop standardized combined efficiency in a two-
stage DEA network. Finally, Section 4 presents a ranking of DMUs through a practical example.

2| Hurwicz Method

The Hurwicz rule is a method applied in decision-making processes under conditions of uncertainty. This
uncertainty arises from the fact that predicting the future accurately is often impossible. While individuals can
forecast various phenomena and events, in most cases, it is too difficult to estimate the exact values of certain
parameters such as temperature, company profits, the volume of finished products, product demand, prices,
production costs, etc. which is highly challenging. If these data points are known, selecting the best option,
such as the most profitable investment strategy, becomes straightforward. However, when many future
factors remain uncertain at the time of decision-making, the decision-maker must choose the most suitable
option based on expert judgment [10]. The Hurwicz method incorporates both optimistic and pessimistic
points of view, typically leading to reasonable conclusions. Hurwicz [10] and [11] argue that a decision-maker
should rank options (Ij;j = 1,..,n) according to a weighted average of optimism and confidence levels.

The Hurwicz criterion is defined as follows:

h; = Aw; + (1 — M)my;, for allj, 1
where,

A is the optimism coefficient, where A €[0,1].
m; And w;represent the best and worst possible outcomes for each option, respectively.

The most well-known Hurwicz criterion, proposed by Hurwicz [10], selects the activities with the highest and
lowest benefits for a given decision X and then assigns the following index to each activity:

Amax(x) + (1 —A) min(x). 2)



Standardized combined efficiency in a two-stage data envelopment analysis network 14

Thus, the activity (Or decision) with the highest index is preferable.

In the Hurwicz critetion, the A parameter, which reflects the manager's level of optimism, is determined by
the decision-maker. Since different managers have varying evaluation criteria, it is difficult to assign a universal
value . By adjusting A, the Hurwicz criterion can transform into different decision-making rules. For

example:
I. WhenA =0 the pessimistic criterion is obtained.
II. When A =1 the optimistic criterion is applied.
There are several variations of the Hurwicz critetion.

By using the Hurwicz criterion to integrate pessimistic and optimistic efficiency measurements, standardized

combined efficiency is calculated as follows:
Pes opt
—(1— i
E=(1-2) s (87 + A6, 3)

1<j<n
where,
L 0" is the optimistic efficiency.
II. 677 it is the pessimistic efficiency.
I &; represents the standardized combined efficiency.

These values are derived using the double frontiers approach for DMUs DMUJ. . DMUs can follow a two-

stage structure, where all outputs from the first stage are used as inputs for the second stage. The outputs of

the first stage, in this case, are called intermediate measures (indices) in the second stage [12].

3| Standardized Composite Efficiency in a Two-Stage Data
Envelopment Analysis Network
Consider a network as shown in Fig 7 withX; =(X,;,...X,;) input indices, Z; =(z,;,...,z,) intermediate

indices (Outputs of the first stage that serve as inputs for the second stage), and Y; = (y,,....y;) final output

indices.

\ 4

Stagel Stage2
X, = (.\'U ...... X ,”,.) Z; = (z]j’“'zki) Y, = (y,,-,..-.)’\,

»
P

~V

Fig. 1. Two-stage process.

The efficiency of the first and second stages, assuming VRS, is defined as follows:

K _
oM — Yk=1WikZkj+ Uo  (2) _ Xi—quryrj+ Ug

J Rovixg ) TR WkZy

To calculate overall efficiency, we consider two stages:

We maximize the efficiency of the first stage for the decision-making unit under evaluation (DMU,), ensuring
that the efficiency of both stages for all units remains less than or equal to one. This is referred to as
"optimistic leader efficiency." Since cost control (Input) is more feasible than profit control (Output), the first
stage is called the leader, and the second stage is the follower [13]. Therefore, we use Model (5):
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K
e*opt(l) _ MaxZ Wk=1 Wkap + UO
p - m
Z Wi:1 ViXip
K
2 Wy WiZgj + Uy

s.t o <1j=1,..,n,
2 Wi—q ViXjj

K —_
2 Wi Uryij + Uo <

K
2 Wy WiZ
vi = 0,wy = 0,u, = 0, for all i, for all k, for all r.

1,j=1,..,n,

Since Model (5) is nonlinear, we linearize it as follows:

m
1
Zvixip =1 and v, =tv,, w,_=tw,,u, =tu,
i=1

u, 2¢g,w, 2¢g,v, 2¢g;for all r,for all k,for all 1.

Thus, we obtain:

9;0pt(1) = Max 215=1szkp + Uy,
s.t. ZirrzllViXip = 1,
m
Z{lewkzkj — Zw vixjj +Up<0,j=1,..,n,
i=1
K K ~
Yk=1Ur¥rj — Zwk_l wiZgj + Up < 0,j=1,..,n,
v; = 0,wy = 0,u,. = 0, foralli, forallk, forallr,
where 0°P®

p

of the first stage, assuming the VRS, we use the following:

K
Yk=1 WkZkp + Up

o P — Min

m
P ity ViXip
K
Yk=1 WkZgj + Ug
s.t. = ] =1,j=1,..,n,
ity ViXjj
YK ouys+0
k=1 Ur¥rj 0
K = '] = 1J Jnl
D=1 WikZkj

v; = 0,wy = 0,u,. = 0,for all i, for all k, for all r.

By applying the variable transformation in Eg. (6), we obtain the linear form:

*pec(n)=Min g
ep Zk:lwkzkp + UOI
st YitqViXip = 1,

m
Y1 WiZig — E w ViXy +Ug=0,j=1,..,n,
1=

K
Z]lgzluryl'j - Z Wk_1 Wka]' + UO > 0,] = 1, a1,

v; = 0,wy = 0,u, = 0, for all i, for all k, for all r,

®)

©)

Q)

represents the optimistic efficiency of stage one DMU, . To compute the pessimistic efficiency

@®)

©)

In the second stage (Follower), to compute the optimistic efficiency of under-VRS, we use the following

model:
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e;;opt(z) — MaXZIS"=1urer + U0
Z§:1szkp

Tke1 WiZip + Ug _ g7Pes()
Yiz1ViXip P

YRe1 Wiz + Ug <1i=1..n (10)
YiZ1 ViXj 7 B

le‘:lurYrj + [_JO <1 ] -1 n

21}§=1sz1<1' - T

U, = g, wy = g,v; = g forallr, for all k, for all i,

)

Using the variable transformation:

K
1

E Wi Zy, =—,

k=1 a

Wk = (ka 5 (11)
V.=oav,,U =au_,
(K=1...k,r=1..,s,i=1...,m).
The linear form of Mode/ (10) becomes:
6,7 = Max Zurym +U,,
r=1
K
s.t. Zwkzkp =1,
P
K m
D wz, +U =003 vix,
k=1 i=l (12)

M=

m
W Z,; —Z:Vixij +U,<0,j=1...,n,
i=l1

~
Il

1

s K

u,y, _ZWkaj +U,<0,j=1,...,n,
k=1

u, >g,w, 2¢g,v, 2¢,for all r,for all k,for all i,

=

where 9;"‘"(2) represents the optimistic efficiency of stage two (Follower). To compute the pessimistic

efficiency of the second stage, we use:

e;pes(z) — Min Z?:;Ur}’rp + U,
Zkzlwkzkp

Tke1 WiZip + Ug _ gPes()

2i21ViXip b
Yo Wiczij + Ug o= 1.m (13)

TRy B
Z?:lurYrj + I_JO > 1_]. -1 n

YheiWikzg B

U, = g,wy = g,v; = g for all r, for all k, for all i.

Applying the variable Mode/ (11), we obtain the linear model:
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*pec(z)=Min
ep Z?:luryrp + Uo,
k —
St Yk=1WkZkp = 1,
K — p'rec() ym P
Yk=1WkZkp + Up = 8, Diz1ViXip = 0,j=1,..,n, 14)

K
Zl%:lurYrj - Z Wk—l WgZgj + Uy=0,j=1,..,n,

U, = g,wWy = ¢,v; = g foralli forallk forallr,

where 6" represents the pessimistic efficiency of the second stage (Follower).

To integrate the optimistic and pessimistic efficiency measures of both stages, we use the standardized
combined efficiency based on the Hurwicz criterion:

(h) _ g*pes(h)
5 =0 e
]

xopt(h) | _

where &g” g and represent the standardized combined efficiencies for stage one and stage two, respectively

0<A<1.The overall standardized combined efficiency is defined as:

1 2
§ =g + 0ED T+, = 1,1, Re[0,1], (16)

where, Ej(l) The standardized combined efficiency is derived from the double frontiers approach for stage one

(Leader) DMU; .

Ej(z) Represents the standardized combined efficiency derived from the double frontiers approach for stage
two (Follower) DMU; .

& Represents the overall standardized combined efficiency assuming VRS of DMU; .

4| Application Example

In this section, we examine the models presented in the previous section. The data pertains to 27 companies,
which are artificial but close to reality and generated using artificial intelligence. These data correspond to a
two-stage network with two input variables, two intermediate variables, and one output variable.

The studied indicators are as follows:
First-stage input indicators:

L x,;; (Working hours: Number of work hours).

Il X,;; (Operational costs: Wages, licensing fees, minor repairs, administrative expenses, travel and distribution

costs, commissions, leasing, raw materials, insurance, and property taxes).
Intermediate indicators:
L. z,;; processed products (Number of completed products).
II.  z,;; service requests fulfilled (Number of service requests handled).

Second-stage output indicator:

¥y;; final output (Goods or services sold in the market, measured in monetary value).

The values of these indicators are presented in Table 1.
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Table 1. Index values.

DMUj Xy Xy z,, Z,, Yy

1 115 2600 84 52 6700
2 120 3100 87 54 4200
3 125 3600 90 56 4700
4 130 4100 93 44 5200
5 135 2100 96 46 5700
6 140 2600 75 48 6200
7 145 3100 78 50 6700
8 150 3600 81 52 4200
9 155 4100 84 54 4700
10 120 2200 92 60 5400
11 125 2700 95 48 5900
12 130 3200 98 50 6400
13 135 3700 101 52 6900
14 140 4200 80 54 4400
15 145 2200 83 56 4900
16 150 2700 86 58 5400
17 155 3200 89 60 5900
18 160 3700 92 48 6400
19 165 4200 95 50 6900
20 130 2300 103 56 4600
21 135 2800 106 58 5100
22 140 3300 85 60 5600
23 145 3800 88 62 6100
24 150 4300 91 64 6600
25 155 2300 94 52 7100
26 160 2800 97 54 4600
27 165 3300 100 56 5100

Applying the proposed models, the optimistic efficiency (Leader) in the optimistic state and the pessimistic
efficiency (Follower) in the pessimistic state are calculated for the first and second stages of the units. These
values are presented in Table 2.

Table 2. Model execution results and unit rankings.

DMU, e;opt(l) e;opt(l) e;pec(l) e;pes(l) gi@) 51(2) § Rank

1 0.9906  0.9591 13673  1.1946  0.959 0930 0945 1
2 0.9089  0.8818  1.3198  1.0000  0.902 0.818 0.860 11
3 0.8338  0.8509  1.1774  1.0456  0.817 0.819 0.818 20
4 0.7681  1.0000  1.0000  1.2354  0.724 0.965 0.844 16
5 1.0000 09925  1.2426  1.1836  0.922 0942 0.932 3
6 0.8514  1.0000  1.0000  1.1836  0.765 0.946 0.856 12
7 0.7886  1.0000  1.0000  1.1836  0.734 0.946 0.840 17
8 0.7301 09259  1.0000  1.1836  0.705 0.909 0.807 21
9 0.6754  0.8928  1.0000  1.1461  0.677 0.878 0.778 26
10 1.0000  0.8151  1.4729  1.0204 1.000 0.792 0.896 5
11 0.9384  0.8476 13122 1.0204 0915 0.808 0.861 10
12 0.8809  0.9598  1.2834  1.2314 0.876 0944 0910 4
13 0.8259  0.9613  1.1406  1.2968  0.800 0.969 0.885 6
14 0.7153  0.9372  1.0000  1.0680  0.697 0.871 0.784 25
15 09841  0.8193  1.2263  1.0350  0.908 0.800 0.854 13
16 0.8101  0.8718  1.1755 1.0517 0.804 0.832 0.818 19
17 0.7462  0.8424  1.1153  1.0707  0.752 0.825 0.788 23
18 0.6913  1.0000  1.0000  1.0707  0.685 0.903 0.794 22
19 0.6532  1.0000  1.0000  1.3144  0.666 0.995 0.831 18
20 1.0000  0.7975  1.3987  1.0000  0.975 0.775 0.875 8
21 1.0000  0.7975  1.3019  1.0158 0942 0.781 0.862 9
22 0.7936  0.8819  1.1577  1.2569  0.790 0914 0.852 14

23 0.9019 0.8819 1.0912 13154 0.821 0.936 0.879 7
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Table. 2. Continued.

* * * s 1 2
DMUp @roPt)  gropt(D) Bpp““) eppes(l) ng Ei() 3 Rank

p p
24 1.0000  0.8819  1.0000  1.0848  0.839 0.850 0.845 15
25 0.9301  1.0000  1.2344  1.3271 0.884 1.000 0942 2
26 0.7922  0.7747  1.1631  1.0376  0.791 0.778 0.785 24
27 0.7440 ~ 0.7785  1.0911  1.0510 0.742 0.785 0.764 27

In Table 2, the second and third columns indicate the optimistic efficiency scores of the first stage
(Leader) and second stage (Follower), all of which are less than or equal to one. A value of 1 indicates that
the unit is efficient at that stage. The fourth and fifth columns show the pessimistic efficiency scores for the
first stage (Leader) and second stage (Follower), all of which are more than or equal to one. A value of 1
indicates efficiency at that stage. Thesixth and seventh columnsshow the normalized combined

efficiency for the first and second stages, calculated with T} =T, =0.5 for DMU; . The eighth column shows

the overall normalized combined efficiency A = 0.5. The last column presents the unit rankings, where units

1, 25, and 5 are ranked first, second, and third, respectively.
5| Conclusion

This study used a standardized two-stage network DEA model to determine the most efficient DMUs. The
data set included 27 companies, with Al-generated data to be realistic but not actual values. The network
structure consisted of two input variables, two intermediate variables, and one output variable. The Hurwicz
criterion is a powerful tool for optimizing the efficiency of two-stage networks in DEA decision-making. This
approach enhances resource allocation and precise efficiency evaluation, improving system-wide
performance. It helps identify improvement points and optimize resource distribution in complex multi-stage
systems. Our research in this article focuses on the simple two-stage network using the VRS model. In the
process for further analytic endeavors, efforts could be extended to a more elaborated network, for instance,
on a network where part of an initial output is out of the system or an alternative network in the second stage,
"new inputs" (Slack variables). We can achieve better results using Hurwicz's approach in the standardized

combined efficiency in a two-stage DEA network.
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