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1|Introduction    

Data Envelopment Analysis (DEA) is a method that uses mathematical programming to calculate the relative 

efficiency of Decision-Making Units (DMUs) with multiple inputs and outputs. It was first introduced by 

Charnes et al. [1], and Banker et al. [2] constructed a link between DEA, production estimation, and efficiency 

frontiers based on empirical observations. The CCR model is one of the most well-known DEA models, 

initially introduced by Charnes et. al [1] to measure the efficiency of a set of DMUs. This model extends 

Farrell’s efficiency measurement to a multi-input, multi-output framework and calculates radial efficiency 

under Constant Returns to Scale (CRS). The CCR model has two orientations: Input-oriented (Also known 

as the envelopment form) and output-oriented (Also known as the multiplier form). In DEA, returns to scale 

refer to the highest level of productivity, which is considered the efficient unit. Moreover, the highest 

productivity level, or the efficient unit, is closely related to the concept of CRS introduced by Banker [2] in 
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Optimizing systems based on decision-making criteria across multiple sets requires selecting different stages to 

achieve the best efficiency for the analyst's objective. Therefore, advantages and disadvantages must be 

considered simultaneously to choose the most effective method. The Hurwicz criterion is an approach that 

combines pessimistic and optimistic criteria to achieve optimal efficiency. This method allows for solving more 

complex problems in two or multiple stages. In the standardized combined approach within a two-stage Data 

Envelopment Analysis (DEA) network, the outputs of the first stage are selected as the inputs of the intermediate 

stage, ultimately determining the Most Productive Scale Size (MPSS). By applying the Hurwicz method in both 
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DEA. Banker et al. [3] further explored the highest level of productivity as part of the literature on returns to 

scale. However, all these scientific studies have evaluated DEA from an optimistic point of view. The 

performance of DMUs can also be assessed from a pessimistic point of view, which may be a more interesting 

category. Studies on pessimistic efficiency measurement in DEA can be found in the research of Wang et al. 

[4], and Wang and Lan [5]. Chen et al. [6] analyzed efficiency scores to predict the efficiency frontier of a two-

stage network DEA model. They concluded that the discrepancy between the efficiency frontier produced by 

the base model and the expected frontier produced is due to synergy effects with Variable Returns to Scale 

(VRS) across different stages. 

Terry et al. [7] proposed a two-stage network for evaluating transit services in sub-Saharan African cities. In 

the first stage, they calculated efficiency and effectiveness scores with a specific bias. In the second stage, they 

adjusted efficiency scores based on bias correction against service and operational indices. Their findings 

indicate that units with higher capacity, in terms of vehicle kilometers traveled and daily ridership, are more 

efficient than units with lower capacity. Zhang et al. [8] investigated exogenous constraints on two-stage DEA 

models. They found that a fixed-sum output constraint, as an exogenous factor, affects efficiency scores in 

cooperative game theory based on centralized models and subjective global models they presented. Dar et al. 

[9] evaluated the efficiency and determinants of public health in India using a two-stage network DEA 

approach. They found that more than one-third of public healthcare services in India are inefficient. Their 

study concluded that socio-economic factors impact healthcare efficiency more than medical factors in India. 

Since efficient units' performance may vary depending on different evaluation perspectives, applying double 

frontiers and the Hurwicz criterion allows for a more comprehensive assessment of each unit. Double 

frontiers efficiently capture both the optimistic and pessimistic performances of a decision-making unit, 

making it a more holistic approach than traditional methods. 

In Section 2, the Hurwicz method is briefly discussed. Section 3 introduces a proposed approach combining 

a two-stage DEA network with the Hurwicz method to develop standardized combined efficiency in a two-

stage DEA network. Finally, Section 4 presents a ranking of DMUs through a practical example. 

2|Hurwicz Method 

The Hurwicz rule is a method applied in decision-making processes under conditions of uncertainty. This 

uncertainty arises from the fact that predicting the future accurately is often impossible. While individuals can 

forecast various phenomena and events, in most cases, it is too difficult to estimate the exact values of certain 

parameters such as temperature, company profits, the volume of finished products, product demand, prices, 

production costs, etc. which is highly challenging. If these data points are known, selecting the best option, 

such as the most profitable investment strategy, becomes straightforward. However, when many future 

factors remain uncertain at the time of decision-making, the decision-maker must choose the most suitable 

option based on expert judgment [10]. The Hurwicz method incorporates both optimistic and pessimistic 

points of view, typically leading to reasonable conclusions. Hurwicz [10] and [11] argue that a decision-maker 

should rank options (Ij; j = 1, … , n)   according to a weighted average of optimism and confidence levels. 

The Hurwicz criterion is defined as follows: 

where,  

 λ  is the optimism coefficient, where λ [0,1] . 

 jm  And jw represent the best and worst possible outcomes for each option, respectively. 

The most well-known Hurwicz criterion, proposed by Hurwicz [10], selects the activities with the highest and 

lowest benefits for a given decision X and then assigns the following index to each activity: 

hi =  λwi + (1 − λ)mi, for all j, (1) 

λ max(x) + (1 − λ) min(x) . (2) 
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  Thus, the activity (Or decision) with the highest index is preferable. 

In the Hurwicz criterion, the λ parameter, which reflects the manager's level of optimism, is determined by 

the decision-maker. Since different managers have varying evaluation criteria, it is difficult to assign a universal 

value λ . By adjusting λ, the Hurwicz criterion can transform into different decision-making rules. For 

example: 

I. When λ 0=  the pessimistic criterion is obtained. 

II. When λ 1= the optimistic criterion is applied. 

There are several variations of the Hurwicz criterion. 

By using the Hurwicz criterion to integrate pessimistic and optimistic efficiency measurements, standardized 

combined efficiency is calculated as follows: 

where, 

I. opt

jθ  is the optimistic efficiency. 

II. pes

jθ it is the pessimistic efficiency. 

III.  jξ  represents the standardized combined efficiency.  

These values are derived using the double frontiers approach for DMUs jDMU . DMUs can follow a two-

stage structure, where all outputs from the first stage are used as inputs for the second stage. The outputs of 

the first stage, in this case, are called intermediate measures (indices) in the second stage [12]. 

3|Standardized Composite Efficiency in a Two-Stage Data 

Envelopment Analysis Network   

Consider a network as shown in Fig. 1 with j 1j mjX (x ,..., x )=  input indices, j 1j kjZ (z ,...,z )=  intermediate 

indices (Outputs of the first stage that serve as inputs for the second stage), and j 1j sjY (y ,..., y )=  final output 

indices.  

Fig. 1. Two-stage process. 

The efficiency of the first and second stages, assuming VRS, is defined as follows:  

To calculate overall efficiency, we consider two stages: 

We maximize the efficiency of the first stage for the decision-making unit under evaluation
p(DMU ) , ensuring 

that the efficiency of both stages for all units remains less than or equal to one. This is referred to as 

"optimistic leader efficiency." Since cost control (Input) is more feasible than profit control (Output), the first 

stage is called the leader, and the second stage is the follower [13]. Therefore, we use Model (5): 

ξ = (1 − λ)
θj

pes

max
1≤j≤n

(θj
pes +  λθj

opt
, (3) 

ej
(1)

=  
∑ wkzkj+ U0

k
k=1

∑ vixij
m
i=1

, ej
(2)

=  
∑ uryrj+ U̅0

s
r=1

∑ WKZkj
K
K=1

,      j = 1, … . n. (4) 



 Roozbeh and  Ahadzadeh Namin   | Ann. Optim. Appl. 21(1) (2025) 12-20 

 

15

 

  

Since Model (5) is nonlinear, we linearize it as follows: 

Thus, we obtain:                                              

where *opt(1)

pθ represents the optimistic efficiency of stage one pDMU . To compute the pessimistic efficiency 

of the first stage, assuming the VRS, we use the following: 

By applying the variable transformation in Eq. (6), we obtain the linear form: 

In the second stage (Follower), to compute the optimistic efficiency of under-VRS, we use the following 

model:  

θp
∗opt(1)

= Max
∑ wk=1

K
 wkzkp + U0

∑ Wi=1
m

  vixip

,

 s.t    
∑ wk=1

K
 wkzkj + U0

∑ wi=1
m

  vixij

≤ 1, j = 1, … , n,

∑ wk=1
K

 urykj + U‾ 0

∑ wk=1
K

 wkzkj

≤ 1, j = 1, … , n,

vi ≥ 0, wk ≥ 0, ur ≥ 0, for all i, for all k, for all r.

 (5) 

m

i ip i i k k r r

i 1

r k i

1
v x and v tv , w tw ,u tu ,

t

u ε,w ε,v ε;for all r,for all k,for all i.

=

= = = =

  

  (6) 

θp
∗opt(1)

= Max ∑k=1
K  wkzkp + U0,

 s.t.    ∑i=1
m  vixip = 1,

 ∑k=1
K  wkzkj − ∑ w

i=1

m

  vixij + U0 ≤ 0, j = 1, … , n,

 ∑k=1
K  uryrj − ∑ w

k=1

K

 wkzkj + U‾ 0 ≤ 0, j = 1, … , n,

vi ≥ 0, wk ≥ 0, ur ≥ 0, for all i, for all k, for all r,

 (7) 

θp
∗pec(1)

= Min
∑  K

k=1  wkzkp + U0

∑  m
i=1  vixip

 s.t.   
∑  K

k=1  wkzkj + U0

∑  m
i=1  vixij

≥ 1, j = 1, … , n,

∑  K
k=1  uryrj + U‾ 0

∑  K
k=1  wkzkj

≥ 1, j = 1, … , n,

vi ≥ 0, wk ≥ 0, ur ≥ 0, for all i, for all k, for all r.

 (8) 

θp

∗pec(1)=Min
 ∑k=1

K  wkzkp + U0,

 s.t.   ∑i=1
m  vixip = 1,

 ∑k=1
K  wkzkj − ∑ W

i=1

m

  vixij + U0 ≥ 0, j = 1, … , n,

 ∑k=1
K  uryrj − ∑ W

k=1

K

 wkzkj + U‾ 0 ≥ 0, j = 1, … , n,

vi ≥ 0, wk ≥ 0, ur ≥ 0, for all i, for all k, for all r,

 (9) 
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Using the variable transformation: 

The linear form of Model (10) becomes: 

where *opt(2)

pθ represents the optimistic efficiency of stage two (Follower). To compute the pessimistic 

efficiency of the second stage, we use: 

Applying the variable Model (11), we obtain the linear model: 

θp
∗opt(2)

= Max
∑r=1

s  uryrp + U‾ 0

∑k=1
K  wkzkp

,

 s.t.   
∑k=1

K  wkzkp + U0

∑i=1
m  vixip

= θp
∗pes(1)

,

∑k=1
K  wkzkj + U0

∑i=1
m  vixij

≤ 1, j = 1, … , n,

∑r=1
s  uryrj + U‾ 0

∑k=1
K  wkzkj

≤ 1, j = 1, … , n,

ur ≥ ε, wk ≥ ε, vi ≥ ε; for all r, for all k, for all i,

 (10) 

( )

K

k kp

k 1

k k

i i r r

1
w z ,

α

W αw ,

V αv ,U αu ,

K 1,...,k, r 1,...,s,i 1,...,m .

=

=

=

= =

= = =



 (11) 

s

*opt(2)

p r rp 0

r 1

K

k kp

k 1

K m

*opt(1)

k kp 0 p i ip

k 1 i 1

K m

k kj i ij 0

k 1 i 1

s K

r rj k kj 0

r 1 k 1

r k i

θ Max u y U ,

s.t. w z 1,

w z U θ . v x ,

w z v x U 0, j 1,...,n,

u y w z U 0, j 1,...,n,

u ε,w ε,v ε,for all r,for all k,for all i,

=

=

= =

= =

= =

= +

=

+ =

− +  =

− +  =

  





 

 

 

 (12) 

θp
∗pes(2)

= Min 
∑r=1

s  uryrp + U‾ 0

∑k=1
K  wkzkp

,

 s.t. 
∑k=1

K  wkzkp + U0

∑i=1
m  vixip

= θp
∗pes(1)

,

∑k=1
K  wkzkj + U0

∑i=1
m  vixij

≥ 1; j = 1, … , n,

∑r=1
s  uryrj + U‾ 0

∑k=1
K  wkzkj

≥ 1; j = 1, … , n,

ur ≥ ε, wk ≥ ε, vi ≥ ε; for all r, for all k, for all i.

 (13) 
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where *pes(2)

pθ represents the pessimistic efficiency of the second stage (Follower). 

To integrate the optimistic and pessimistic efficiency measures of both stages, we use the standardized 

combined efficiency based on the Hurwicz criterion: 

where (1)

jξ (2)

jξ and represent the standardized combined efficiencies for stage one and stage two, respectively

0 λ 1  . The overall standardized combined efficiency is defined as: 

where, ξj
(1)

 The standardized combined efficiency is derived from the double frontiers approach for stage one 

(Leader) jDMU . 

ξj
(2)

 Represents the standardized combined efficiency derived from the double frontiers approach for stage 

two (Follower) jDMU . 

ξj Represents the overall standardized combined efficiency assuming VRS of jDMU . 

4|Application Example 

In this section, we examine the models presented in the previous section. The data pertains to 27 companies, 

which are artificial but close to reality and generated using artificial intelligence. These data correspond to a 

two-stage network with two input variables, two intermediate variables, and one output variable. 

The studied indicators are as follows: 

First-stage input indicators: 

I. 1jx ; (Working hours: Number of work hours). 

II. 2 jx ; (Operational costs: Wages, licensing fees, minor repairs, administrative expenses, travel and distribution 

costs, commissions, leasing, raw materials, insurance, and property taxes). 

Intermediate indicators: 

I. 1jz ; processed products (Number of completed products). 

II. 2 jz ; service requests fulfilled (Number of service requests handled). 

Second-stage output indicator: 

1jy ; final output (Goods or services sold in the market, measured in monetary value). 

The values of these indicators are presented in Table 1. 

θp

∗pec(2)=Min
 ∑r=1

𝑠  u𝑟𝑦rp + U0,

 s.t.  ∑k=1
k  w𝑘zkp = 1,

 ∑k=1
K  wkzkp + U0 = θp

∗pec(1) . ∑i=1
m  vixip ≥ 0, j = 1, … , n,

 ∑k=1
K  uryrj − ∑ 𝑤

k=1

K

 wkzkj + U‾ 0 ≥ 0, j = 1, … , n,

𝑢r ≥  ε, wk ≥ ε , 𝑣i ≥ ε, for all i, for all k, for all r,

 (14) 

ξj
(h)

= (1 − λ)
θ∗pes(h)

maxθ
j
∗pes(h) + λθj

∗opt(h)
, h = 1,2, (15) 

ξj = Γ1ξj
(1)

+ Γ2ξj
(2)

, Γ1 + Γ2 = 1, Γ1, Γ2ϵ[0,1], (16) 
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  Table 1. Index values. 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Applying the proposed models, the optimistic efficiency (Leader) in the optimistic state and the pessimistic 

efficiency (Follower) in the pessimistic state are calculated for the first and second stages of the units. These 

values are presented in Table 2.  

Table 2. Model execution results and unit rankings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j
DMU  

1j
x  2j

x  
1j
z  

2j
z  1j

y  

1 115 2600 84 52 6700 
2 120 3100 87 54 4200 
3 125 3600 90 56 4700 
4 130 4100 93 44 5200 
5 135 2100 96 46 5700 
6 140 2600 75 48 6200 
7 145 3100 78 50 6700 
8 150 3600 81 52 4200 
9 155 4100 84 54 4700 
10 120 2200 92 60 5400 
11 125 2700 95 48 5900 
12 130 3200 98 50 6400 
13 135 3700 101 52 6900 
14 140 4200 80 54 4400 
15 145 2200 83 56 4900 
16 150 2700 86 58 5400 
17 155 3200 89 60 5900 
18 160 3700 92 48 6400 
19 165 4200 95 50 6900 
20 130 2300 103 56 4600 
21 135 2800 106 58 5100 
22 140 3300 85 60 5600 
23 145 3800 88 62 6100 
24 150 4300 91 64 6600 
25 155 2300 94 52 7100 
26 160 2800 97 54 4600 
27 165 3300 100 56 5100 

p
DMU  *opt(1)

p
θ  

*opt(1)

p
θ  

*pec(1)

p
θ  

*pes(1)

p
θ    𝛏𝐣

(𝟏)
 𝛏𝐣

(𝟐)
   𝛏𝐣 Rank 

1 0.9906 0.9591 1.3673 1.1946 0.959 0.930 0.945 1 
2 0.9089 0.8818 1.3198 1.0000 0.902 0.818 0.860 11 
3 0.8338 0.8509 1.1774 1.0456 0.817 0.819 0.818 20 
4 0.7681 1.0000 1.0000 1.2354 0.724 0.965 0.844 16 
5 1.0000 0.9925 1.2426 1.1836 0.922 0.942 0.932 3 
6 0.8514 1.0000 1.0000 1.1836 0.765 0.946 0.856 12 
7 0.7886 1.0000 1.0000 1.1836 0.734 0.946 0.840 17 
8 0.7301 0.9259 1.0000 1.1836 0.705 0.909 0.807 21 
9 0.6754 0.8928 1.0000 1.1461 0.677 0.878 0.778 26 
10 1.0000 0.8151 1.4729 1.0204 1.000 0.792 0.896 5 
11 0.9384 0.8476 1.3122 1.0204 0.915 0.808 0.861 10 
12 0.8809 0.9598 1.2834 1.2314 0.876 0.944 0.910 4 
13 0.8259 0.9613 1.1406 1.2968 0.800 0.969 0.885 6 
14 0.7153 0.9372 1.0000 1.0680 0.697 0.871 0.784 25 
15 0.9841 0.8193 1.2263 1.0350 0.908 0.800 0.854 13 
16 0.8101 0.8718 1.1755 1.0517 0.804 0.832 0.818 19 
17 0.7462 0.8424 1.1153 1.0707 0.752 0.825 0.788 23 
18 0.6913 1.0000 1.0000 1.0707 0.685 0.903 0.794 22 
19 0.6532 1.0000 1.0000 1.3144 0.666 0.995 0.831 18 
20 1.0000 0.7975 1.3987 1.0000 0.975 0.775 0.875 8 
21 1.0000 0.7975 1.3019 1.0158 0.942 0.781 0.862 9 
22 0.7936 0.8819 1.1577 1.2569 0.790 0.914 0.852 14 
23 0.9019 0.8819 1.0912 1.3154 0.821 0.936 0.879 7 
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Table. 2. Continued. 

 

 

  

 

In Table 2, the second and third columns indicate the optimistic efficiency scores of the first stage 

(Leader) and second stage (Follower), all of which are less than or equal to one. A value of 1 indicates that 

the unit is efficient at that stage. The fourth and fifth columns show the pessimistic efficiency scores for the 

first stage (Leader) and second stage (Follower), all of which are more than or equal to one. A value of 1 

indicates efficiency at that stage. The sixth and seventh columns show the normalized combined 

efficiency for the first and second stages, calculated with 
1 2Γ Γ 0.5= = for jDMU . The eighth column shows 

the overall normalized combined efficiency λ = 0.5. The last column presents the unit rankings, where units 

1, 25, and 5 are ranked first, second, and third, respectively. 

5|Conclusion 

This study used a standardized two-stage network DEA model to determine the most efficient DMUs. The 

data set included 27 companies, with AI-generated data to be realistic but not actual values. The network 

structure consisted of two input variables, two intermediate variables, and one output variable. The Hurwicz 

criterion is a powerful tool for optimizing the efficiency of two-stage networks in DEA decision-making. This 

approach enhances resource allocation and precise efficiency evaluation, improving system-wide 

performance. It helps identify improvement points and optimize resource distribution in complex multi-stage 

systems. Our research in this article focuses on the simple two-stage network using the VRS model. In the 

process for further analytic endeavors, efforts could be extended to a more elaborated network, for instance, 

on a network where part of an initial output is out of the system or an alternative network in the second stage, 

"new inputs" (Slack variables). We can achieve better results using Hurwicz's approach in the standardized 

combined efficiency in a two-stage DEA network. 
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