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1|Introduction    

The exponential growth in global containerized trade has intensified competition among ports, transforming 

terminal operations into complex optimization challenges requiring sophisticated management approaches 

[1]. Container terminals serve as crucial interfaces between maritime and terrestrial transportation networks, 

where the efficient coordination of berths, cranes, and storage facilities fundamentally determines overall port 
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Abstract 

Container unloading and loading operations in ports are addressed through the Berth Allocation Problem (BAP). 

Developing container terminal models and methods that enhance operational efficiency is crucial for supporting 

maritime ports in managing the increasing volume of container flows within global supply chains. Consequently, 

recent years have witnessed a growing body of research literature aimed at advancing quayside operations. This study 

first examines the theoretical framework of the Quay Crane Scheduling Problem (QCSP) and Quay Crane 

Assignment Problem (QCAP) as presented in existing literature. We then formally define these problems within 

deterministic and sequencing contexts. The research employs berth modeling alongside Genetic Algorithms (GAs) 

and Particle Swarm Optimization (PSO) for deterministic scenarios, while stochastic conditions are addressed 

through berth simulation. Given the NP-hard nature of the problem, obtaining optimal solutions within reasonable 

time frames is infeasible. Thus, we implement metaheuristic approaches—GA, PSO, and simulation of the model—

to efficiently allocate vessels to berths.  
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performance and competitive advantage. A significant operational challenge stems from the increasing size 

of container vessels, which substantially prolongs berthing durations and strains terminal resources. As Quay 

Cranes (QCs) are the primary equipment for handling container unloading and loading operations, enhancing 

QC efficiency has become a critical imperative for both researchers and practitioners seeking to improve 

terminal productivity. Consequently, optimizing the integrated planning of berth allocation and QC 

scheduling has emerged as a vital strategy, as these decisions directly interface with maritime and landside 

operations and significantly impact key performance metrics, such as vessel turnaround time [2]. 

The Berth Allocation Problem (BAP) involves determining optimal mooring positions and times for arriving 

vessels, considering constraints such as vessel length, draft, arrival time, container volumes, and storage 

requirements. Terminals may employ discrete models, segmenting the berth into fixed positions, or 

continuous models, allowing vessels to moor across berth boundaries to maximize utilization. Simultaneously, 

the Quay Crane Scheduling Problem (QCSP) focuses on efficiently sequencing container handling tasks for 

the QCs assigned to each vessel to minimize service time. Given the inherent interdependence between where 

and when a vessel berths and how its assigned QCs operate, integrated optimization of BAP and QCSP offers 

significant potential for efficiency gains over sequential planning, despite the increased computational 

complexity. This project, therefore, investigates integrated berth allocation and QC scheduling to enhance 

operational efficiency at Shahid Beheshti Port, Chabahar. The recent installation of new gantry cranes at this 

port informs the modeling context. The research employs metaheuristic optimization techniques and 

simulation approaches to address vessel sequencing, allocation, and crane scheduling. 

2|Literature Review 

Efficient quayside operations planning is fundamental to container terminal competitiveness, fundamentally 

integrating three interrelated optimization problems: the BAP, the Quay Crane Assignment Problem (QCAP), 

and the QCSP. Decisions within these domains collectively determine vessel turnaround times—a critical 

service quality metric [3]. The sustained growth of maritime transport, particularly containerized shipping, 

due to its security, efficiency, and standardization advantages [4], has intensified operational challenges. 

Minimizing vessel service time is paramount for ports, as reducing loading/unloading durations critically 

improves terminal throughput and container cycle times [5]. Consequently, optimal berth allocation and QC 

deployment directly influence operational throughput and profitability [6], necessitating sophisticated 

resource optimization (labor, berths, equipment) alongside service quality improvements [7]. 

2.1|Quayside Optimization Problems 

I. BAP: The BAP assigns mooring positions and times to vessels within a planning horizon while respecting 

berth capacity constraints. Foundational work by Imai et al. [8] established the discrete BAP framework, later 

expanded to continuous models where vessels can berth at any quay position [9]. Problem complexity escalates 

with dynamic arrivals, heterogeneous vessels, and multiple objectives. Metaheuristics like Tabu Search [10] and 

Variable Neighborhood Search [11] have proven effective for large-scale, realistic BAP instances, 

outperforming exact methods. 

II. QCSP: The QCSP schedules container handling tasks (typically grouped by bay) for the QCs assigned to a 

single vessel, aiming to minimize the vessel's service time (makespan) while respecting precedence and safety 

constraints (e.g., non-crossing, interference). Early exact approaches like branch-and-cut highlighted the 

problem's computational difficulty [12]. Incorporating practical constraints like crane interference further 

complicates the problem [13]. Heuristics [14] and advanced methods like branch-and-bound for multi-

objective cases [15] and surrogate models [16] continue to be developed. 

III. Integrated planning (BAP + QCAP + QCSP): Recognizing the strong interdependencies between berthing 

decisions and crane productivity, research has increasingly focused on integrated models. Liu et al. [17] 

demonstrated that isolated optimization leads to suboptimal performance, emphasizing the need for 

integration. However, the computational complexity of full integration remains a significant challenge, often 

necessitating partial integration strategies or hierarchical decomposition approaches to balance solution quality 
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and tractability [18]. Integration can extend further to include yard operations [19] or automated guided vehicles 

[20]. 

2.2|Solution Methodologies 

Metaheuristic optimization: Given the NP-hard nature of BAP, QCSP, and especially integrated problems, 

metaheuristics are the predominant solution approach for realistic problem sizes. Genetic Algorithms (GAs) 

have shown effectiveness for BAP since early applications [21] and remain versatile for multi-objective 

problems [22]. Particle Swarm Optimization (PSO) is valued for its convergence speed and has demonstrated 

superior performance over GAs in some integrated BAP-QCAP studies [23]. Other metaheuristics applied 

include estimation of distribution algorithms [24] and novel human-inspired algorithms [25]. Hybrid 

metaheuristics and multi-objective approaches like NSGA-II are increasingly common to address complex, 

real-world scenarios [26], [27]. 

Simulation-based approaches: Discrete-event simulation is powerful for modeling the stochastic elements of 

terminal operations (e.g., vessel arrivals, handling times, equipment breakdowns) under various policies and 

scenarios [28]. Simulation-Optimization (SO) frameworks integrate simulation for evaluation with 

metaheuristics for search, providing robust solutions under uncertainty [29]. Simulation is also crucial for 

validating and assessing the robustness of solutions derived from optimization models [30]. 

This research contributes to this field by developing and applying metaheuristic approaches (PSO, GA, 

NSGA-II) to deterministic mathematical models for integrated berth allocation and QC scheduling, 

complemented by stochastic simulation modeling using empirical distributions to capture real-world 

uncertainties at Shahid Beheshti Port. A comparative analysis of metaheuristic performance will be conducted. 

3|Methodology 

3.1|Problem Formulation and Assumptions 

Berth allocation involves determining the berthing time and position for each container ship, considering 

factors such as ship length, cargo volume, arrival time, and the required number of cranes. The port is divided 

into several berths, making the allocation problem discrete. Sometimes, ships are allowed to berth along the 

entire quay to maximize capacity, leading to a continuous BAP. 

This study uses Shahid Rajaee Port, equipped with gantry cranes, as a case study. The modeled problem is 

solved in two stages using three algorithms: first, ship allocation, then sequencing, employing both heuristic 

and metaheuristic methods. 

Seaside operations planning in container terminals fundamentally encompasses three interrelated problems: 

The BAP, the QCAP, and the QCSP. The decisions made in addressing these problems collectively determine 

the duration of container vessels’ stay at the port, which directly reflects the quality of service offered to 

shipping lines and influences the overall competitiveness of the terminal. Consequently, integrated planning 

of these operations has become a central focus within operations research and transportation studies. 

Typically, a port consists of multiple quays, each designated for specific types of ships. The processing speed 

for loading and unloading varies depending on the ship’s length and type, with preparation time accounted 

for between consecutive ships to ensure smooth transitions. The number of cranes allocated per berth is 

fixed, comprising various types such as gantry and QCs, which function as processing machines. The general 

terminal layout includes berths, cranes, storage yards (both open and closed), and a fleet of trucks responsible 

for transporting containers to urban centers or airports. Ships are categorized by capacity into three main 

types: Feeders, which carry fewer than 1,000 containers and primarily transfer cargo from central hub ports 

to smaller ports; Handy-size vessels, with capacities ranging from 1,000 to 3,000 Twenty Equivalent Unit 

(TEU); and Panamax ships, accommodating between 3,000 and 4,000 TEU. Container units adhere to 

standardized measurements, primarily the TEU and the Forty Equivalent Unit (FEU), facilitating uniform 

handling and transport across the global shipping network. 
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In this study, three ship types (Feeder, Handy size, Panamax) are considered, all arriving with 20-foot 

containers. Input distributions and crane processing speeds are obtained from expert surveys. The arrival 

distribution is: 50% Feeder, 15% Panamax, and the rest Handy size. Five out of ten berths are active, each 

with at least one and at most three cranes. The channel is about 2,700 meters, with an average ship speed of 

60 km/h (about 3 minutes, variance 1). Only four ships can pass through the channel simultaneously. Ships 

are prioritized solely by arrival time and are assigned to berths with the most available length. Gantry cranes 

unload at a rate of 50–80 containers/hour, increasing with more cranes. Trucks can carry about five containers 

(10 tons), with loading and transport times following a triangular distribution (average 2 hours, max 4 hours, 

mode 3 hours). The shortest queue at each terminal determines the ship order. A total of 100 ships of the 

three types, based on the given percentages, enter the port. 

4|Solution Method 

This study addresses quay scheduling and sequencing, reviewing existing problems and methods. Two 

solution approaches are used: deterministic modeling and probabilistic modeling. For mathematical modeling, 

metaheuristic algorithms such as NSGA, GA, and PSO are used, and results are compared. For simulation, 

input and service distributions are derived from relevant data, and two-stage modeling is performed: 

Unloading ships at the quay and transporting goods to warehouses by trucks, followed by analysis and 

sensitivity tests. 

4.1|Quay Mathematical Modelling 

First, we consider deterministic modelling as mentioned earlier. 

Table 1. The notations. 

  

 

 

 

 

 

 

 

 

Based on Table 1, the mathematical formulation is as follows: 

Sets  

i Index for ships 

j, j′ Index for quays 

Mj Set of ships assigned to berth j 

Variables  

xijk One if ship j is scheduled at berth i in sequence k, Zero otherwise 

Stijk Start time of ship j at berth i in sequence k 

Cijk Completion time of ship j at berth i in sequence k 

Parameters  

Pij Processing time of ship j at berth i 

rj Arrival time of ship j 

Sjj′ Setup time for ship j after ship j′ 

Min Z1 = Cmax, Min Z2 = Lmax, 

s. t. 

∑ ∑ xijk = 1,

jk

        for all i ∈ Mj, 

(1) 

∑ ∑ xijk = 1,         for all k,   

ij

 

−xijk ≤ Myijk
1  ,              for all i ∈ Mj . for all k. j, 

(2) 
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Each set of constraints implies a specific assumption as follows: 

In Eq. (1), the first objective minimizes the maximum completion time (Cmax), and the second objective 

minimizes the maximum lateness/delay time (Lmax).  

In Eq. (2), each ship must be assigned to exactly one berth in a unique sequence. Every ship gets allocated to 

one specific berth and one specific position in the processing order.  

 

Stijk − rj ≤ M(1 − yijk
1 ),       for all i ∈ Mj . for all k. j,  

rj − Stijk ≤ Myijk
1 ,                for all i ∈ Mj . for all k. j,  

  xijk ≤ M(1 − yijk
1 ),            for all i ∈ Mj . for all k. j,  

−xijk ≤ Myijk,          for all i ∈ Mj . for all k. j,  

  Stijk − Pij − Cijk ≤ M(1 − yijk),        for all i ∈ Mj . for all k. j, 

− Stijk + Pij + Cijk  ≤ Myijk,             for all i ∈ Mj . for all k. j, 

xijk ≤ M(1 − yijk),            for all i ∈ Mj . for all k. j,                      

−xijk ≤ Myijk,            for all i ∈ Mj . for all k. j, 

−Stijk + Pij + Cijk ≤ M(1 − yijk),       for all i ∈ Mj . for all k. j, 

Stijk − Pij − Cijk  ≤ Myijk,               for all i ∈ Mj . for all k. j, 

(3) 

xijk ≤ M(1 − yijk),               for all i ∈ Mj . for all k. j, 

−αijj′k(k−1) ≤ Mwijj′k(k−1),              for all i ∈ Mj . for all k. j, 

Stijk − Cij′(k−1) − Sjj′ ≤ M(1 − wijj′k(k−1)),      for all i ∈ Mj . for all k. j, 

−Stijk + Cij′(k−1) + Sjj′  ≤ Mwijj′k(k−1),             for all i ∈ Mj . for all k. j, 

αijj′k(k−1) ≤ M(1 − wijj′k(k−1)),              for all i ∈ Mj . for all k. j, 

Αijj′k(k−1) ≤ xijk,             for all i ∈ Mj . for all k. j, 

αijj′k(k−1) ≤ xij′(k−1),               for all i ∈ Mj . for all k. j, 

(4) 

αijj′k(k−1) ≥ xijk + xij′(k−1) − 1,               for all i ∈ Mj . for all k. j, 

Lmax ≥ lijk,           for all i ∈ Mj . for all k. j, 
(5) 

Cmax ≥ Cijk,         for all i ∈ Mj . for all k. j, (6) 

x. y. w. α ∈ {0.1}. (7) 
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Constraints (3) and (4) control the start time of each ship's operation, which must be after its arrival time at the 

port. The completion time of each ship equals its start time plus the processing time on the assigned berth.  

Based on Eq. (5), each job must start after the completion of the previous job plus the required setup time. 

The start time of work on a specific machine requires that the job be assigned to that machine.  

Eq. (6) shows that Cmax must be greater than or equal to all individual job completion times Lmax must be 

greater than or equal to all individual job delays/lateness values. 

Eq. (7) All decision variables (x, y, w, α) are binary variables taking values in {0,1}. 

4.2|Quay Simulation Model 

As mentioned in the introduction, in this study, three types of ships—Liner, Handy Size, and Panamax—are 

considered, all of which enter the docks with 20-foot container units. The arrival distribution for each type 

of ship is determined based on collected data, and the processing speed of the cranes is obtained through 

research and consultation with experts. Among the ship arrivals, 50% are Feeder, 15% are Panamax, and the 

remainder are Handy Size. Each ship has technical specifications such as the number of containers, ship 

length (for berthing purposes), and a different tag color for each type. 

Fig. 1. Simulated port schema. 

In this model, five active docks out of a total of ten are considered, with each dock equipped with at least one 

and at most three cranes. The channel length is approximately 2,700 meters, and the average speed of the 

ships is assumed to be 60 km/h, which is roughly equivalent to 3 minutes with a variance of one. Furthermore, 

only four ships can pass through the channel simultaneously. The ships do not have any priority over one 

another, and the only determining priority is their arrival time at the dock. Ships are assigned to the dock with 

the most available berthing length. The unloading speed of each gantry crane is estimated to be uniformly 

between 50 and 80 containers per hour, and naturally, this speed increases with the addition of more cranes. 

Loading and unloading operations are carried out based on the stated assumptions. Finally, the containers are 

transported to customs warehouses, or if those are full, to city warehouses by small trucks. Each truck can 

carry about five containers, equivalent to 10 tons, and the loading and transport time follows a triangular 

distribution with a minimum of 2 hours, a maximum of 4 hours, and a most likely value of 3 hours. The 
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arrangement of ships is determined based on the shortest queue at each terminal. In total, 100 ships of the 

three mentioned types enter the anchorage according to the specified percentages. The overall simulation, 

along with its diagram, is presented in Fig. 1. In the next stage, all containers are transferred to the warehouse 

by 20 ten-ton trucks, each capable of carrying five containers. 

5|Results and Analysis 

5.1|Metaheuristic-Based Solution for the Quay Problem 

The above problem is an NP-hard problem, and to solve it, we employ GA and PSO. The working 

methodology with these algorithms is as follows: first, the allocation of ships to berths is determined. This 

process transforms the parallel machine problem into a single machine problem. 

To compare the performance of the PSO and GA, we considered one of the main objective functions, namely 

the maximum completion time (Cmax). Both algorithms were tested under identical conditions, and the results 

are summarized in Table 2. In our model, we considered a model with 100 jobs (ships) and 10 machines 

(berths). The algorithms were executed five times, each with an initial population of 1000 and 200 generations.  

Table 2. Comparison of genetic algorithm and PSO 

performance on 𝐂𝐦𝐚𝐱. 

 

 

As observed in Table 2, the PSO algorithm consistently yielded weaker results compared to the GA. Therefore, 

based on these findings, the GA demonstrates superior performance and is selected for further analysis in 

subsequent stages of this research. 

After determining the allocation, the sequence of operations must be established. For this purpose, we used 

several heuristic approaches to determine the sequence: 

I. Shortest Processing Time (SPT): Arrange processing times in ascending order based on processing time. 

II. pi − ri rule: Arrange in ascending order based on the relationship pi − ri. 

III. ri + maxk(ski) − pi rule: Arrange in ascending order based on the relationship ri + maxk(ski) − pi. 

Table 3. Maximum completion time objective values for different methods. 

 

 

 

Experimentally, each of the above methods was tested ten times on sample data. The best reported values for 

minimum completion time and delay time were selected. This process helps identify the optimal method. The 

values are reported in Tables 3 and 4. 

Table 4. Maximum delay time objective values for different methods. 

 

 

 

The results of each method based on mean and variance are presented in Table 5. By observing the results, 

we can see that sorting based on ri + maxk(ski) − pi has both a lower mean and standard deviation. Therefore, 

it is a suitable method for creating sequences in metaheuristic algorithms. 

5 4 3 2 1 Iteration 
25 26 26 25 26 GA 
35 39 41 41 44 PSO 

10 9 8 7 6 5 4 3 2 1 Iteration 
28 25 29 28 27 27 27 29 27 28 SPT 
26 26 25 27 27 27 27 29 28 28 pi − ri 
25 25 26 25 26 26 25 25 27 26 ri + maxk(ski) − pi 

Iteration 1 2 3 4 5 6 7 8 9 10 

SPT 5049 5073 5247 5272 5304 5066 5230 5265 4961 5038 

pi − ri 5020 4954 5285 5108 5203 5189 5089 5009 5214 5289 

ri + maxk(ski) − pi 4995 5054 5038 4996 5040 5091 5088 4979 5059 4983 
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Table 5. Mean and standard deviation of the reported results. 

 

 

 

 

 

 

The problem with 100 ships and 10 berths was solved using the GA. The algorithm population size was set 

to 500, and the number of iterations to 200. The Pareto chart is shown as Fig. 2. The obtained Pareto frontier 

contains 63 different sequences. These sequences were positioned at four points in terms of objective 

functions. 

Fig. 2. Pareto of GA. 

For one of the sequences, the Gantt chart of the problem scheduling is shown in Fig. 3. In this figure, each 

vertical axis represents a berth and the horizontal axis represents time. 

Fig. 3. Gantt of one of the optimal solutions. 

 

Method Objective Function Mean std 

SPT Cmax 27.5 1.18 

Lmax 5163 125.01 

pi − ri Cmax 27 1.16 

Lmax 5119 111.07 

ri + maxk(ski) − pi Cmax 25.6 0.70 

Lmax 5037.778 40.47 
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5.2|Simulation-Based Solution for the Quay Problem 

The first part of the simulation model focuses on the loading and unloading operations at five berths, with a 

particular emphasis on evaluating the productivity of cranes stationed at each berth. The rationale for 

examining crane productivity per berth stems from the operational practice that, upon the arrival of a ship, 

all cranes at that berth work concurrently on it. Consequently, the productivity of the cranes effectively 

represents the overall productivity of the berth itself. The simulation outputs indicate that over a period of 

approximately six months, a total of 142,459 containers were handled across 100 scheduled ship arrivals, 

demonstrating the system’s capacity to manage substantial throughput efficiently. The second part of the 

model addresses the inland transportation of containers from the berths to warehouses via trucks. Assuming 

the availability of 20 trucks, the simulation estimates that approximately eight months are required to transfer 

the entire container volume. This two-stage simulation framework provides a comprehensive view of terminal 

operations, from quayside handling to inland logistics. 

Over a period of approximately six months, 142,459 containers were handled and transferred according to 

the planned schedule, with all containers processed from the depot. The measures of each crane are presented 

in Table 5. 

Table 5. Output measures. 

 

 

 

 

To assess the robustness of the simulation model, sensitivity analyses were conducted on ten test data sets, 

examining the impact of varying input parameters on multiple objective functions. Specifically, sensitivity 

analysis for the quay operations simulation included three key factors: 1) increasing berth length, 2) modifying 

the access channel width, and 3) adjusting berth prioritization. For the inland transportation model, analyses 

focused on: 1) increasing the number of trucks, and 2) optimizing transport and unloading times. For instance, 

extending the berth length at Shahid Beheshti port from 1,280 meters to 1,600 meters—effectively widening 

the quay and adding new berths while maintaining the number of cranes—resulted in a significant increase in 

crane utilization rates (Table 6). This expansion reduced crane idle times and capital wastage, enabling the port 

to handle a higher number of ships and approximately 20,000 additional containers within a shorter 

timeframe. Correspondingly, average queue lengths at the berths decreased markedly, indicating improved 

operational flow. 

Table 6. Output measures after length modification. 

 

 

 

 

Adjustments to the access channel width were also examined to address low vessel throughput, with findings 

suggesting that optimizing berth length and truck availability yields better system performance than merely 

increasing channel width unnecessarily.  

Furthermore, prioritizing berth 2 in Table 7, which initially exhibited low efficiency, helped balance ship traffic 

across berths, improving crane utilizations and reducing queue lengths relative to the baseline scenario (Table 

5). Increasing the truck fleet size from 20 to 30 reduced container transfer times by approximately three 

Crane Num. Utility Ave. Queue 

Crane1 49% 0.09 
Crane2 32% 1.6 
Crane3 56% 0.32 
Crane4 96% 22.28 
Crane5 37% 2.27 

Crane Num. Utility Ave. Queue 

Crane1 94% 0.94 
Crane2 97% 0.97 
Crane3 96% 0.95 
Crane4 99% 0.992 
Crane5 100% 0.999 
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months. Alternatively, optimizing transport and unloading times by halving their variance also improved 

overall system efficiency. 

Table 7. Output measures after berth prioritization adjustment. 

 

 

 

 

6|Discussion and Conclusion 

We presented a comprehensive approach to optimizing container terminal operations by integrating berth 

allocation, QCs scheduling, and inland transportation through both mathematical modeling and simulation 

techniques. The use of metaheuristic algorithms, GA and PSO, allowed effective handling of the NP-hard 

nature of the quay scheduling problem. Comparative analysis showed that GA outperformed PSO in terms 

of solution quality and stability, making it the preferred method for further optimization. Then, the simulation 

model provided valuable insights into the operational dynamics of the port, capturing the complex 

interactions between ship arrivals, crane utilization, and container movement to warehouses. The productivity 

of cranes at each berth was identified as a key performance indicator, reflecting the overall efficiency of quay 

operations. The results indicated that increasing berth length significantly improves crane utilization and 

reduces vessel waiting times, thereby enhancing throughput. Moreover, prioritizing underperforming berths 

helped balance workload distribution, further optimizing resource use. Inland transportation, modeled via 

truck movements, was found to be a critical bottleneck affecting total container handling time. Sensitivity 

analyses demonstrated that increasing the truck fleet size or optimizing loading and transport times can 

substantially reduce delays, highlighting the importance of integrated planning across terminal operations. 

This research successfully developed and validated an integrated framework for optimizing container terminal 

operations, combining metaheuristic optimization and discrete-event simulation. The GA proved to be a 

robust and effective tool for solving the quay scheduling problem, outperforming PSO in both accuracy and 

consistency. Simulation results revealed that strategic investments in berth expansion and truck fleet 

augmentation can lead to significant improvements in terminal throughput and resource utilization. 

Additionally, dynamic berth prioritization emerged as a practical approach to balancing workloads and 

minimizing vessel queues. Furthermore, emphasizes the necessity of an integrated perspective, considering 

both seaside and landside operations, to achieve comprehensive efficiency gains in container terminals. Future 

research could extend this work by incorporating real-time data analytics and exploring the impact of 

emerging technologies such as automation and digital twins on terminal performance. 
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