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1|Introduction 

The rapid growth of e-commerce and mobile internet technologies has significantly increased credit card 

transactions, driven by digital payment systems, online shopping, mobile banking, and enhanced security 

measures [1]. 

However, this rise has amplified credit card fraud, an unauthorized activity in electronic payment systems that 

is illegal and targets financial institutions [2]. Detecting such fraud using traditional methods is challenging, 

making advanced fraud detection models critical for academia and industry [3]. 

Real-world datasets for fraud detection often contain numerous features, many of which are irrelevant or 

redundant, degrading model performance [4]. Feature Selection (FS) addresses this by reducing dataset size 
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while preserving accuracy, unlike feature construction, which creates new features. This paper focuses on FS, 

a preprocessing step that boosts classification performance by eliminating noisy or redundant data. FS 

methods include filters, which rely on data properties, and wrappers, which use a learning algorithm to 

evaluate subsets [5]. 

This study proposes a novel wrapper approach for credit card fraud detection, employing the Binary 

Dragonfly Algorithm (BDA) for FS and the K-Nearest Neighbors (KNN) classifier for evaluation. BDA, a 

swarm intelligence meta-heuristic, optimizes feature subsets, enhancing detection efficiency. The paper is 

organized as follows: Section 2 reviews the literature, Section 3 defines the problem, Section 4 is about the 

methodology, Section 5 presents experimental results, and Section 6 concludes the study. 

2|Literature Review 

Credit card fraud detection has advanced considerably with the integration of machine learning and meta-

heuristic algorithms, particularly in optimizing FS to improve classification performance. Early work by 

Duman and Ozcelik [6] in 2011 introduced Genetic Algorithm (GA) and Scatter Search (SS) alongside 

Logistic Regression and Neural Networks, achieving a better performance gain over traditional methods. This 

foundational study highlighted the potential of metaheuristics to enhance fraud detection. 

In 2012, Ramakalyani and Umadevi [2] extended GA’s application with a rule-based classifier, demonstrating 

its adaptability for FS across diverse domains. Vats et al. [7] in 2013 further refined GA by selecting feature 

subsets that maximized correlation with fraud labels, boosting accuracy while minimizing False Positives (FP). 

A persistent challenge in this field is managing imbalanced datasets, where legitimate ones significantly 

outnumber fraudulent transactions. Benchaji et al. [8] in 2019 tackled this by integrating GA with K-means 

and Synthetic Minority Oversampling Technique (SMOTE), enhancing Random Forest’s accuracy through 

balanced FS. Similarly, Saheed et al. [9] in 2020 applied GA across multiple classifiers, achieving an Area 

Under the Curve (AUC) of 1 and 100% accuracy with GA-Decision Tree, underscoring its versatility. 

Recent advancements have shifted toward the application of swarm intelligence. Uma Rani et al. [10] in 2023 

utilized Grey Wolf Optimization (GWO) with Random Forest and SMOTE-Edited Nearest Neighbors, 

improving AUC, Matthews Correlation Coefficient, and Kappa scores while reducing Mean Squared Error. 

Furlanetto et al. [11] in 2023 employed Artificial Bee Colony (ABC) with Random Forest, reducing features 

from 30 to 15 and increasing accuracy from 0.948 to 0.963.  

Prabhakaran and Nedunchelian [1] in 2023 proposed a hybrid of Particle Swarm Optimization (PSO) and 

Opposition-based Cat Swarm Optimization, enhancing FS efficiency. Finally, Sikkandar et al. [12] in 2023 

applied the Bat Optimization Algorithm for anomaly detection, reinforcing swarm intelligence’s growing role 

in fraud detection. 

The literature on credit card fraud detection highlights the growing use of meta-heuristic algorithms, such as 

GA, PSO, GWO, and ABC, to tackle fraud and the challenges posed by imbalanced datasets. Despite these 

advancements, a notable research gap persists: no prior study has investigated the BDA for FS in this context. 

Existing approaches often struggle with computational inefficiency or scalability when applied to high-

dimensional fraud datasets and tend to pair FS with conventional classifiers like Random Forest or Decision 

Trees, limiting their adaptability. 

This study fills this gap by leveraging the BDA, a meta-heuristic inspired by the dynamic swarming patterns 

of dragonflies, to optimize FS. BDA’s strength lies in its ability to balance exploration (global search) and 

exploitation (local search), enabling it to pinpoint optimal feature subsets in complex datasets efficiently. 

Notably, this research combines BDA with KNN, a classifier less commonly employed in fraud detection, to 

improve detection accuracy and computational efficiency. 

This novel integration not only addresses the limitations of prior methods but also offers a scalable and 

practical solution for real-time fraud detection systems. By pioneering the application of BDA in this domain, 
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this work expands the repertoire of meta-heuristic techniques and delivers a robust framework for improving 

fraud detection performance. 

3|Problem Definition 

Credit card fraud detection is a significant challenge in the financial industry, as fraudulent transactions can 

result in substantial financial losses and erode consumer trust. Detecting such anomalies is particularly difficult 

due to the highly imbalanced nature of transaction datasets, where fraudulent activities constitute only a small 

fraction of the total transactions. Moreover, the presence of high-dimensional data with redundant or 

irrelevant features further complicates the task of building accurate and efficient detection models. To address 

these challenges, this study focuses on FS, a preprocessing step that identifies the most relevant features, 

thereby improving model performance and reducing computational complexity. 

3.1|Dataset 

In this study, we utilize a credit card fraud detection dataset that comprises credit card transactions made by 

European cardholders over two days in September 2013. This dataset is widely employed in data mining and 

machine learning research, particularly for tasks such as anomaly detection, classification, FS, and addressing 

imbalanced learning challenges. It is publicly available on the Kaggle website [13] and other platforms. 

The dataset comprises 284,807 transactions, of which only 492 are fraudulent, representing approximately 

0.172% of the total transactions. This severe class imbalance poses a significant challenge for fraud detection 

models. The dataset includes 30 features: 28 anonymized features (V1 through V28), Time, and Amount. All 

features are numerical. The features V1 through V28 are the result of a Principal Component Analysis (PCA) 

transformation applied to the original features to ensure confidentiality. The Time feature represents the 

seconds elapsed between each transaction and the first transaction in the dataset, while the Amount feature 

indicates the transaction amount. The target variable, Class, is a binary label where 1 denotes a fraudulent 

transaction and 0 denotes a genuine one. 

3.2|Feature Selection 

FS plays a vital role in machine learning by addressing the challenges posed by expansive feature spaces, which 

can hinder model performance. The selection of an appropriate FS technique varies depending on the specific 

problem at hand. FS entails identifying the most pertinent features in a dataset to eliminate noise and 

redundancy, thereby enhancing model effectiveness. Key benefits of applying FS include streamlining models, 

shortening training duration, and circumventing the curse of dimensionality. Finding an optimal feature subset 

remains a significant hurdle in FS tasks. The primary aim is to extract a group of M features from an initial 

set of N features (where M < N) while preserving essential information. Evaluating all possible combinations 

is impractical, as a dataset with N features yields 2N subsets that is truly a computationally intensive process 

[5]. 
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Fig. 1. Overall FS process [4]. 

 

 

The imbalanced nature of credit card transaction datasets and the computational complexity of FS present 

significant barriers to accurate fraud detection. This study addresses these challenges through an optimized 

FS strategy, outlined in the methodology that follows. 

4|Methodology 

In this study, credit card fraud detection through a machine learning framework is addressed that optimizes 

FS using the BDA and employs the KNN classifier for classification. The section begins with an overview of 

the Dragonfly Algorithm (DA), a swarm intelligence optimization technique inspired by dragonfly swarming 

behaviors, known for balancing exploration and exploitation. Then, the BDA was adapted for binary 

optimization tasks, such as FS. Next, we detail how features are represented in BDA, followed by an 

explanation of the KNN classifier and its role in our study. Finally, we outline the fitness functions used to 

evaluate feature subsets, ensuring both accuracy and computational efficiency. 

4.1|Dragonfly Algorithm 

DA is a swarm intelligence optimization method introduced by Mirjalili [14] in 2016, drawing inspiration from 

the swarming patterns observed in dragonflies. This nature-inspired meta-heuristic is designed to tackle a 

wide range of optimization challenges spanning various fields, including engineering, robotics, and image 

processing. In the context of this study, DA serves as the foundation for the BDA, which is employed for FS 

in this research. 

DA replicates the dual swarming behaviors of dragonflies: static swarms, where dragonflies hover in small 

groups to feed, and dynamic swarms, where they migrate over long distances in larger formations. These 

behaviors mirror the algorithm's two primary phases: exploitation, which refines solutions within a local area, 

and exploration, which searches broadly across the solution space. The interplay between these phases enables  

 

Fig. 2. The static and dynamic swarming behaviors of dragonflies [15]. 

Five basic primitive principles, presented in Fig. 3, are utilized to model the swarm behaviors of dragonflies 

as follows [15]. In the following equations, P represents the position of the current individual, Pj the position 

of the jth neighboring individual, and M the number of neighboring individuals. 

The algorithm models dragonfly swarming through five fundamental principles that dictate their movement: 
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I. Separation: Ensures individuals avoid collisions by maintaining distance from nearby dragonflies, calculated 

as the negative sum of differences between the current dragonfly’s position and its neighbors’ positions. 

II. Alignment: Encourages dragonflies to synchronize their velocities with those of neighboring individuals, 

derived as the average velocity of the neighbors. 

III. Cohesion: Drives dragonflies toward the swarm’s center, determined by the difference between the 

average position of neighbors and the current individual’s position. 

IV. Attraction: Guides dragonflies toward food sources, represented by the distance between the dragonfly’s 

position and the food source’s location. Fi represents the food source of the ith individual and Fp is the 

position of the food source in this formula. 

V. Distraction: Steers dragonflies away from enemies, modeled as the position offset from an enemy’s 

location. Ei denotes the position of the enemy of the ith individual and Ep denotes the enemy’s position. 

 

Fig. 3. Primitive corrective patterns between dragonflies in 

a swarm (different steps of the DA) [15]. 

These principles are mathematically formulated to update the positions of artificial dragonflies within the 

search space. Two key vectors govern the movement: ΔP is the step vector, akin to velocity in PSO, and P is 

the position vector. The step vector is adjusted using a weighted combination of the five behaviors, plus an 

inertia term from the previous iteration, as shown below: 

Si = −∑P− Pj

M

j−1

. (1) 

Ai = −
∑ Vj
M
j−1

M
. (2) 

Ci =
∑ Pj
M
j−1

M
− P. (3) 

Fi = Fp − P. (4) 

Ei = Ep + P. (5) 

∆Pi
t+1 = (sSi + aAi + cCi + fFi + eEi) + ω∆Pi

t, (6) 
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Where s, a, c, f, and e are weights for separation, alignment, cohesion, attraction, and distraction, respectively, 

while ω is the inertia weight, and t denotes the iteration. The position is then updated as: 

To promote exploration when no neighboring solutions are available, DA incorporates a random walk 

mechanism known as a Levy flight, updating the position as: 

Where d is the dimensionality of the search space, the Levy flight introduces controlled randomness to 

enhance the algorithm’s ability to escape local optima. 

The Levy flight is calculated by: 

Where r1 and r2 are random vectors uniformly distributed in the range [0,1], β is a constant, and σ is calculated 

as follows: 

When x is an integer: 

4.2|Binary Dragonfly Algorithm 

The BDA is an adapted form of the DA, tailored specifically for optimization tasks involving binary decision 

variables. Unlike the standard DA, which navigates continuous search spaces, BDA modifies this framework 

to operate within a discrete binary domain, making it an effective tool for FS. In this study, BDA is applied 

to the credit card fraud detection dataset to determine an optimal subset of features, thereby enhancing the 

performance of the machine learning model by reducing dataset dimensionality and filtering out irrelevant or 

redundant attributes. 

Introduced by Abdel-Basset et al. [16], BDA was originally developed to tackle the 0-1 knapsack problem, 

which is a well-known NP-hard combinatorial optimization task. The algorithm employs a V-shaped transfer 

function to convert the continuous position updates of dragonflies into binary outcomes, enabling it to 

function in a binary search space. This transformation makes BDA well-suited for problems where solutions 

are represented as binary choices, such as selecting or discarding features. 

In BDA, each dragonfly’s position is encoded as a binary vector, with each bit corresponding to a feature in 

the dataset (1 signifying selection and 0 indicating exclusion). The algorithm iteratively refines these binary 

vectors by leveraging the five core principles of DA mentioned in the previous subsection. These principles 

guide the swarm’s behavior, with a transfer function ensuring that position updates remain binary. 

A key component of BDA is its V-shaped transfer function, which translates the continuous step vector into 

a probability that dictates whether a bit in the position vector changes. The function is expressed as: 

Pi
t+1 = Pi

t + ∆Pi
t+1. (7) 

Pi
t+1 = Pi

t + Levy(d) × Pi
t, (8) 

Levy(d) = 0.01 ×
r1 × σ

|r2|
1
β

, (9) 

σ = (
Γ(1 + β) × sin⁡(

πβ
2 )

Γ × 2(
β−1
2

) × β × (
1 + β
2 )

)

1
β

. (10) 

Γ(x) = ∫ (tx−1e−t)dt
∞

0

. (11) 

Γ(x) = (x − 1)! (12) 



 Ashkivar and Ghousi |Ann. Optim. Appl. 1(3) (2025) 153-166 

 

159

 

  

Here, ΔPi represents the step vector for the ith dragonfly, and the output ranges between 0 and 1. The position 

update follows this rule: 

Where r is a random value uniformly distributed between 0 and 1, and Pi
t is the current position of the ith 

dragonfly at iteration t. This probabilistic approach introduces randomness, allowing BDA to effectively 

explore the binary solution space while preventing premature convergence to suboptimal solutions. 

In this research, BDA is implemented to select an optimal feature subset from the dataset’s 28 features. The 

goal is to minimize the number of features while maximizing classification accuracy, addressing issues such 

as high dimensionality and class imbalance. The binary representation inherent to BDA aligns seamlessly with 

the FS process, where each feature is either included or excluded, streamlining the optimization task. 

4.3|K-Nearest Neighbor 

The KNN algorithm is a straightforward yet practical supervised machine learning approach used for 

classification tasks. It operates by assigning a class label to a new data point based on the labels of its closest 

neighbors in the training dataset. As a non-parametric and instance-based method, KNN makes no 

assumptions about the underlying data distribution and defers computation until prediction time, relying 

solely on stored training data [17]. This learning strategy leverages a distance metric (Typically Euclidean 

distance) to measure similarity between data points, aiding in the identification of fraudulent credit card 

transactions while minimizing FP. 

In this research, KNN serves as the classification component following FS by the BDA. By evaluating the 

reduced feature subset, KNN predicts whether a transaction is fraudulent or genuine, leveraging its proximity-

based logic to enhance detection accuracy. The integration of BDA and KNN aims to mitigate some of 

KNN’s limitations (such as sensitivity to irrelevant features) by ensuring only the most informative features 

are used, thus improving efficiency and effectiveness in credit card fraud detection. 

4.4|Fitness Function 

The primary goal of this study is to identify an optimal, minimal subset of features that effectively captures 

the essential characteristics of the credit card fraud detection dataset, enabling efficient training of a machine 

learning model. The BDA is employed to search for this subset, necessitating a fitness function to assess the 

quality of each candidate feature combination. A well-designed fitness function must strike a balance between 

two competing objectives: maximizing classification accuracy (how well the subset predicts fraud) and 

minimizing complexity (the number of features selected). This balance ensures that high-performing, concise 

feature sets are favored, while poor accuracy or overly complex sets are penalized. The formulation of a fitness 

function varies based on the specific problem and desired trade-offs. 

Among all design considerations and approaches, the linear weighted combination fitness function is 

proposed for this FS task. This approach combines the error rate and feature count linearly, assigning 

adjustable weights to each component. The function is defined as: 

Here, x represents the feature subset, error(x) is the classification error rate (estimated using a classifier like 

KNN), num_features(x) is the number of selected features, and Max_features is the total number of features 

in the dataset (28 in this case). The parameters α and β are weights that prioritize accuracy and simplicity, 

T(ΔPi) = |
2

π
arctan (

π

2
ΔPi)|. (13) 

Pi
t+1 = {

1 − Pi
t,⁡⁡⁡⁡if⁡⁡⁡r < T(ΔPi

t+1),

Pi
t,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 (14) 

f(x) = α × error(x) + β
num_feat(x)

Max_feat
. (15) 
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respectively. A higher α emphasizes reducing errors, while a higher β favors fewer features. This function is 

minimized, with lower values indicating superior subsets. 

4.5|Parameters Tunning 

To ensure the efficacy of the proposed methodology, careful tuning of key parameters is essential. This study 

employs the Taguchi method, a statistical optimization technique, to systematically adjust the parameters of 

BDA, enhancing its convergence and stability in selecting an optimal feature subset from the credit card fraud 

dataset. This approach aims to make the FS process robust against variations in the dataset, thereby improving 

the overall performance of the subsequent KNN classifier. 

The Taguchi method optimizes system performance by identifying parameter settings that minimize 

variability and align outcomes with desired targets [18]. It follows a two-step process of experimental design 

and analysis. Firstly, an orthogonal array is used to conduct a minimal set of experiments, efficiently testing 

multiple parameters and their interactions. This reduces the experimental burden while capturing the effects 

of each factor. After this step, results are evaluated using a quality loss function and signal-to-noise (S/N) 

ratio. The quality loss function is calculated by: 

This function measures the deviation of the output (y) from a target value (T), where k is a cost-related 

constant. The formula of S/N ratio with the “smaller-is-better” form is: 

Eqn. (17) is applied here to minimize the fitness value, where n is the number of observations. 

Table 1. Parameters levels of the Taguchi method for BDA. 

 

 

 

 

Table 1 outlines the parameter settings tested to optimize the BDA’s performance in FS. It includes six 

parameters, each evaluated across five levels. The parameters reflect BDA’s swarm dynamics and 

computational aspects, while the weights influence the balance between exploration and exploitation. The 

range of levels ensures comprehensive coverage, accommodating the dataset’s complexity (28 features, 

284,807 transactions). 

4.6|Performance Metrics 

In this study, the effectiveness of the proposed methodology is evaluated using a set of well-established 

performance metrics. These metrics serve as critical benchmarks to guide the optimization of feature subsets 

and the tuning of the KNN classifier, ensuring the model accurately detects fraudulent credit card transactions 

while managing the challenges of an imbalanced dataset. The following performance metrics are utilized 

throughout the methodology to evaluate feature subsets and the final classifier: 

Accuracy: This metric measures the overall correctness of the model, calculated as the ratio of correctly 

predicted transactions (both fraudulent and genuine) to the total number of transactions. It is defined as: 

True Positives (TP) is the number of correctly identified frauds, True Negatives (TN) is the number of 

correctly identified genuine transactions, FP is the number of genuine transactions misclassified as frauds, 

L(y) = k(y − T)2. (16) 

S

N
Ratio = −10 log(

∑y2

n
). (17) 

Parameter Description Level 1 Level 2 Level 3 Level 4 Level 5 

N Number of dragonflies 10 20 30 40 50 
S Separation weight 0.1 0.2 0.3 0.4 0.5 
A Alignment weight 0.1 0.2 0.3 0.4 0.5 
C Cohesion weight 0.1 0.2 0.3 0.4 0.5 
F Attraction weight 0.1 0.2 0.3 0.4 0.5 
E Distraction weight 0.1 0.2 0.3 0.4 0.5 

Accuracy =
TP+TN

TP+TN++FP+FN
. (16) 
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and False Negatives (FN) is the number of frauds missed. Accuracy is a primary indicator of model 

performance, but it can be misleading in imbalanced datasets, necessitating the use of additional metrics. 

Precision: This metric quantifies the proportion of predicted frauds that are actually fraudulent, providing 

insight into the model’s reliability when flagging transactions. It is expressed as: 

High precision is crucial in fraud detection to minimize false alarms and reduce unnecessary investigations by 

financial institutions. 

Recall (sensitivity) 

Also known as the true positive rate, recall measures the proportion of actual frauds correctly identified by 

the model, calculated as: 

Given the severe consequences of missing fraudulent transactions, recall is prioritized to ensure the model 

captures as many frauds as possible, particularly in the context of the dataset’s extreme imbalance (0.1728% 

frauds). 

F1-score 

The F1-score provides a balanced evaluation by computing the harmonic mean of precision and recall, 

defined as: 

This metric is particularly valuable in this study, as it accounts for the trade-off between precision and recall, 

offering a single score to optimize when dealing with imbalanced classes. 

 

Fig. 4. Framework of the proposed credit card fraud detection. 

5|Results and Discussions 

This section presents the experimental outcomes of the proposed methodology, which leverages the BDA 

for FS and KNN for classification to detect fraudulent credit card transactions. To tackle the class imbalance 

in the Kaggle Credit Card dataset, five oversampled datasets (named OS1 to OS5) are generated, each 

balanced with an equal number of fraud and non-fraud samples. For each dataset, we ran the BDA-KNN 

Precision =
TP

TP+FP
. (17) 

Recall =
TP

TP+FN
. (18) 

F1score = 2 ×
Precision×Recall

Precision+Recall
. (19) 
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model five times and selected the best-performing run based on accuracy, precision, recall, and F1-score. This 

process yielded five best runs (one per dataset). The performance metrics for the best run of each oversampled 

dataset are presented in Table 2. 

These metrics reflect the model’s effectiveness in classifying fraudulent transactions. The results show 

consistently high performance across all datasets. OS1 achieved the highest accuracy (99.20%) and F1-score 

(99.19%), reflecting a strong balance between precision and recall. OS2 stands out with a recall of 99.90%, 

though its precision (98.23%) is slightly lower than others. These variations suggest differences in how each 

oversampled dataset influenced the model’s decision boundaries. 

 Table 2. Performance metrics for the best run of each oversampled dataset. 

 

 

 

 

To explore the optimization dynamics of the BDA-KNN model, we examined the convergence behavior for 

each dataset. Fig. 5 to 9 illustrate the convergence plots for the best-performing run of OS1 to OS5, 

respectively, with iterations on the x-axis and fitness values on the y-axis. All of them are tested within 100 

iterations. 

 

Fig. 5. Best run of OS1 convergence plot. 

 

Fig. 6. Best run of OS2 convergence Plot. 

 

Dataset Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

OS1 99.20 98.68 99.69 99.19 
OS2 99.05 98.23 99.90 99.06 
OS3 99.15 98.56 99.81 99.18 
OS4 99.15 98.63 99.70 99.16 
OS5 99.15 98.49 99.80 99.14 
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Fig. 7. Best run of OS3 convergence Plot. 

 

Fig. 8. Best run of OS4 convergence Plot. 

 

Fig. 9. Best run of OS5 convergence Plot. 

These plots reveal that while all datasets achieved stable solutions, the speed and pattern of convergence 

differed, likely due to variations in oversampling or feature distributions.  

Also, the results demonstrate that BDA, when tuned with the Taguchi method, effectively reduces 

dimensionality while maintaining high detection rates, validated by the plots’ convergence trends. As shown 

in the figures, the best fitness value can be seen in Fig. 1, which is near 0.011. 

As the final results, the average of each metric across the five best runs is computed to summarize the BDA-

KNN model’s overall performance. These averages are reported in Table 3. 
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Table 3. Average performance metrics 

for the BDA-KNN model. 

 

 

 

The average accuracy of 99.14% highlights the model’s reliability in classifying transactions. The precision of 

98.52% indicates exceptional performance in minimizing FP, while the recall of 99.78% ensures most fraud 

cases are detected. The F1-score of 99.15% reflects a well-balanced model, making it highly effective for fraud 

detection. 

6|Conclusion 

Imbalanced datasets and high-dimensional feature spaces pose significant challenges for credit card fraud 

detection. This paper introduces a novel machine learning approach combining the BDA for FS and KNN 

for classification. BDA, a metaheuristic inspired by dragonfly swarming behavior, excels at optimizing feature 

subsets in large datasets, enhancing detection efficiency. This study addresses the challenges posed by 

imbalanced datasets and high-dimensional feature spaces in credit card transaction data, aiming to improve 

detection accuracy while minimizing computational complexity. 

The proposed BDA-KNN method achieved an impressive average accuracy of 99.14%, with a precision of 

98.52%, a recall of 99.78%, and an F1 score of 99.15%, demonstrating its effectiveness for credit card fraud 

detection. These results highlight the capability of the BDA to optimize FS, paired with the KNN classifier, 

in addressing challenges such as imbalanced datasets and high-dimensional feature spaces.  

Future work could refine BDA parameters (e.g., swarm size, behavioral weights) to boost performance. 

Comparing BDA with methods such as GA or PSO, or integrating hybrid models, may further optimize the 

FS. Testing alternative classifiers (e.g., Random Forests, Support Vector Machines) could enhance the 

performance. 

Addressing class imbalance through oversampling or cost-sensitive learning, and exploring feature 

interpretability, offer additional avenues to strengthen fraud detection and prevention. Given the challenge 

of class imbalance in the dataset, applying advanced techniques like implementing cost-sensitive learning 

could enhance the model’s ability to detect fraudulent transactions. 

Finally, delving deeper into the interpretability of the selected features might provide valuable insights into 

the transaction attributes most indicative of fraud, paving the way for more effective fraud prevention 

strategies. 
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