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1|Introduction    

The Set Covering Location Problem (SCLP) is one of the classical and important location problems first 

developed by Toregas et al. [1]. The aim of this problem is to find the minimum number (or least 

establishment cost) of facilities among potential facilities, so that each demand point is covered at least by 

one facility. In the classical set covering problem, the assignment of clients is specified by distance between 

facilities and clients. Karp [2] proved that the SCLP is NP-Hard. This problem can be applied to determine 

the location of emergency medical centers [3]  or hospitals [4] and schedule the airline crew [5], [6], for 

instances. A review about this problem’s applications can be found in [7], [8]. While the static problems deal 

only with a single-period, the dynamic ones concern planning over various time periods. In multi-period 

models, planning for a location to establish facilities or capacity of facilities in each period, are often 
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  considered, so that the time dimension is usually specified by a time-dependent variable. Multi-period 

location problem is essential when assignment costs, number of demands change during planning horizon. 

In this research, fixed establishment cost parameters in SCLP are assumed to change over various time 

periods.  

Incorporating different aspects of uncertainty is also a main challenge in the real world situations. Some of 

the data and parameters of practical problems are not often precisely known. So, the uncertainty may not 

bring about the desirable optimum solution. Some of the common reasons for uncertainty are prediction 

error, measurement error and implementation error. In a facility location problem, for instance, the number 

of client demands, the radius of covering, inventory amount in stores, the 38 time and cost of travel may 

not be exactly specified. There are different approaches for optimization under uncertainty including 

stochastic approach [9], grey system [10], fuzzy optimization [3], probabilistic approach [11], Bayesian 

method [12], uncertainty theory [13] and robust optimization [14].  

In this paper, the Multi-and Single-Period Set Covering Location Problems (SPSCLP, MPSCLP) under 

uncertainty in fixed establishment costs is discussed through the robust optimization approach. Here, we 

present the hard worst case and soft worst approaches. The introduced models are solved for OR-Library 

data by the  CPLEX solver. In the rest of the paper, a brief literature review on multi- and single-period 

SCLPs is firstly presented in Section 2. Section 3 provides a mathematical model for SCLP and its robust 

counterpart models. A mathematical model for MPSCLP and its robust counterpart are introduced in 

Section 4. The comparison and analysis of the calculated results are presented in Section 5. Finally, the 

conclusions and suggestions for potential future researches are given in Section 6. 

2|Literature Review 

The literature review on Uncertain Set Covering Location Problem (USCLP) is presented in Subsection 2.1. 

Subsection 2.2 summarizes researches concerning multi-period SCLP and finally a brief review on USCLP 

based on robust optimization approach is presented in Subsection 2.3. 

2.1|Set Covering Location Problem 

Beraldi and Ruszczynski [15] considered a stochastic approach to study SCLP under uncertainty in constraint 

and proposed branch and bound algorithm to solve their model. Hwang [16]  studied SCLP with the 

assumption of uncertainty in constraint by the fuzzy optimization approach. Chiang et al. [17] investigated 

the SCLP through the fuzzy approach. Saxena et al. [18] modelled the probabilistic SCLP under uncertainty 

in constraint and solved it by the cutting plane algorithm. Ahmed and Georgiou [7] studied the probabilistic 

SCLP under uncertainty caused by overcrowding; they applied a stochastic optimization approach and used 

some reliable inequalities to solve their model. 

2.2|Multi- and Single-Period Set Covering Location Problems 

When the problem parameters vary over time, it is better to plan for more than one period. This results in 

a multi-period or dynamic location problem with parameters changing over time periods. A multi-period 

location problem is necessary as the problem parameters change over the planning horizon. Gunawardane 

[19] proposed a multi-period model for an SCLP to minimize the uncovered demands. He also took into 

account the possibilities that an open facility gets closed a closed one gets open before the end of the time 

period. 

2.3|Uncertain Set Covering Location Problem with Robust Optimization 

Approach 

Several approaches have been proposed to deal with uncertainty. One of them is the robust optimization 

approach where for each problem containing uncertain parameters, a robust model is proposed; this is called 
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  the robust counterpart which would be solved instead of the main problem [20]. The robust optimization 

includes the hard worst case approach [21], [14], soft worst one [22], [23] and the realistic approach [24], 

[25] whose details can be found in Refs. [22], [26]. Pereira and Averbakh [27] discussed a probabilistic SCLP 

under uncertainty in the establishment costs of facilities with a scenario-based robust optimization approach. 

They used Benders decomposition method and a combination of Genetic and branch and bound algorithms 

to solve their proposed model. Lutter et al. [28] studied an uncertain probabilistic SCLP for emergency 

services and solved it based on a combination of robust optimization and probabilistic optimization 

approaches using the cutting plane algorithm. 

3|Robust Counterpart Model for Uncertain Set Covering Location 

Problem 

To introduce the mathematical model of the USCLP and its counterpart, consider that the set of demand 

points and the set of potential location candidates for establishing facilities are denoted by I and J, 

respectively. Moreover, let fj be the establishment cost of facilities in location j ∈ J, aij be the assignment 

parameter which is equal to one if the client i ∈ I can be covered by a facility in location j ∈ J, and zero 

otherwise. The xj is considered as the decision variable of the problem which is equal to one if a candidate 

location can provide service, and zero otherwise. The mathematical model is as follows [1]. 

The objective function in Eq. (1) minimizes the establishment cost of facilities. The Constraint (2) guarantees 

that each client is covered by at least one facility. The definition domain of decision variable xj is illustrated 

in Constraint (3). Problem (1)  is called, nominal set covering problem and it is NP-Hard [2]. Here, the fixed 

establishment costs fj̃’s are assumed  to be uncertain. So, the equivalent form of Problem (1) under 

uncertainty in the fixed establishment cost parameter can be rewriten as Problem (2): 

The Problem (2) is called the USCLP. The fj̃ is an uncertain parameter taking random values in the interval 

of [fj − fj, fj + fj] where fj and fj are the maximum non-negative perturbation and the nominal value of the 

uncertain parameter, respectively. Therefore, fj ̃is defined as follows. 

Here, ξj being a stochastic parameter is the perturbation factor which varies in the interval of [−1,1]. For 

the facilities with the fixed establishment cost, fj is assumed to be zero. 

Min     ∑ fj

j∈J

xj. (1) 

s. t.      
 ∑ aij

j∈J

xj ≥ 1,     i ∈ I. (2) 

xj ∈ {0,1},             j ∈ J. (3) 

 Min       τ. 
s. t. (2), (3) 

(4) 

∑ fj̃

j∈J

xj ≤ τ. 

τ ≥ 0. 

(5) 

fj̃ = fj + ξjfj. (6) 
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  3.1|Robust Counterpart Model of Set Covering Location Problem Based on 

Soyster Approach  

The first robust optimization model was proposed in 1973 by Soyster [22]. Despite the perturbation in the 

uncertain parameters in the interval of [−1,1], this model guarantees the robustness of the solutions. The 

solutions obtained by this model are conservative, i.e their robustness is guaranteed but the optimization of 

the main problem is lost greatly [22], [21]. Concerning the uncertain fixed establishment cost parameters, if 

|ξj| takes values between 0 to ε (0 < ε ≤ 1), the sharing space of n perturbations forms an n-dimensional 

cube called the uncertainty box space due to its geometrical shape. For the Problem (2), the uncertainty box 

space is described as:  

The uncertain set Eq. (7) enforces the stochastic variables ξj to be less than ε. For each fj̃ ∈ [fj − fj, fj + fj], 

we have 

According to UB  structure and |ξj| ≤ ε we have 

where the last equality has been written considering the non-negative nature of fj parameter and xj variable. 

So, the robust counterpart model based on the uncertainty set Eq. (7) for a USCLP would be in the form of 

Problem (3): 

The Constraint (4) will be also satisfied by satisfaction of Constraint (10). Constraint (4) will be satisfied by 

satisfying Constraint (10). 

Proposition 1. The optimum solution of the robust counterpart Model (3) is a feasible solution for the 

equivalent Problem (2).   

Proof: assume that x∗ is the optimum solution of the robust counterpart optimized model Problem (3). So 

according to Relation (10), we have 

Based on ξ
j

∈ [−1,1] and −1 ≤ ξj ≤ 1, one concludes that fj̃ ≥ fj − εfj and fj̃ ≤ fj + εfj, i.e. the uncertain 

parameter of the problem, fj̃, varies in the interval of [fj − fj, fj + fj]. The x∗ is a feasible answer and robust 

in the uncertain interval, since: 

The last inequality is written according to the feasible and non-negative nature of x∗.  

UB = {j ∈ J: fj̃ = fj + ξjfj, |ξj| ≤ ε}. (7) 





 

( )
j j j j j j

j j j j j j j j
f f f ,f f ξj J j j

f x max f x f ξ f x .max
  − +  − 

   
 = +   

   
    (8) 

 
( )

B B B
j

j j j j j j j j j j j j j j j j
ξ j j j jj U j U j U

f ξ f x f x ε f x f x ε f x f x ε f x ,max
 −   

 
+  + = + = + 

 
        (9) 

 Min      τ. 
s. t. (2), (3), (5) 

∑ fj

j∈J

xj + ε ∑ fj

j∈UB

xj ≤. 
(10) 

∑ fjxj
∗

j

+ ε ∑ fj

j∈UB

|xj
∗| ≤ τ. (11) 

∑ fj̃

j

xj
∗ ≤ ∑ fjxj

∗

j

+ ε ∑ fj

j∈UB

xj
∗ ≤ ∑ fjxj

∗

j

+ ε ∑ fj

j∈UB

|xj
∗| ≤ τ. (12) 
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  3.2|Robust Counterpart Model of Uncertain Set Covering Location 

Problem Based on Ben-Tall and Nemirovski Approach  

Criticizing the very conservative approach of Soyster, Ben-Tall and Nemirovski [29]  stated that in an 

uncertain optimization problem, the possibility that all the uncertain parameters have their worst value 

simultaneously is very low. El-Ghaoui and Lebert [30]  as well as Ben-Tall and Nemirovski [29] tried to 

improve the objective function value by reducing the uncertainty set and through the partial reduction of 

robustness. In the ellipsoidal approach, the uncertainty space for the fixed establishment cost parameters is 

introduced as follows. 

The set UE is an ellipse; according to its structure, for each fj̃ ∈ [fj − fj, fj + fj], we have 

Two non-negative variables yj and zj are defined as 0 ≤ xj ≤ zj + yj  and f and z are the vectors including 

fj and zj, respectively, i.e. f = (f1, f2, . . . , fn) and z = (z1, z2, . . . zn). Since xj ≤ zj + yj: 

Also, we know that 

Considering the non-negative parameter Ω, Relation (15) gives: 

To obtain a feasible solution for the worst situation, i.e. Relation (17), regarding the non-negative behavior 

of xj variable, by defining two new variables, we have: 

Moreover, if xj ≥ 0, Relation (18) is also established. The robust counterpart model for USCLP based on the 

uncertainty Set Eq. (13) is in the form of Problem (4): 

UE = {j ∈ J: fj̃ = fj +               ξjfj, ∑ ξj
2 ≤ Ω2

j∈J

}. (13) 

∑ fj̃

j

xj = ∑ (fj + ξjfj)

j∈UE

xj ≤ ∑ fjxj

j

+ ε ∑ fj

j∈UE

|xj|. (14) 

fjxj ≤ fjzj + fjyj ⇒ ∑ fjxj

j∈UE

≤ ∑ fj

j∈UE

zj + ∑ fjyj.

j∈UE

 (15) 

∑ fjxj

j∈UE

= √( ∑ fjxj

j∈UE

)

2

≥ √ ∑ fj

2
xj

2

j∈UE

. (16) 

∑ fjxj ≤

j∈UE

Ω√ ∑ fj

2
zi

2

j∈UE

+ ∑ fj

j∈UE

yi. (17) 

 

(18) 

Min    τ. 
s. t. Eqs. (2), (3), (5) 

(19) 

  

 
+ +  

  
  

E E

2 2
j j j j jj

j J j U j U

f x ε f y Ω z τf  

xj − zj ≤ yj. 

(20) 

E E

2 2
jj j j j j j j j j

j j jj U j U

f x ε f x f x ε f y Ω f z
 

 
+  + + 

  
    
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The model Problem (4)  is nonlinear. The advantage of the ellipsoid model over the box one is its less 

conservatism, however the final model is nonlinear and can not be solved through the methods applied to 

the discrete optimization problems [22]. 

Proposition  2. The solution of the robust counterpart Problem (4) is a feasible solution for the equivalent 

problem P2.  

Proof: it followed from Relations (14) and (18). 

The adjustable conservatism approach for a USCLP under uncertainty in the fixed facility establishment cost 

parameters is discussed in the following 

3.3|Robust Counterpart Model for Uncertain Set Covering Location Problem 

based on Bertsimas and Sim Approach  

Bertsimas and Sim [22] introduced another uncertainty set with adjustable robustness. In this approach, 

Γ parameter, being not necessarily an integer, is used to adjust the robustness of the answers against their 

conserving level. The robust optimization approach guarantees the worst state. To prevent the violation of 

uncertain constraints, the uncertain parameters can vary in some intervals. In this method, it is assumed that 

at most [Γ] number of parameters have uncertainty according to Relation (6) and the maximum perturbation 

of only another parameter such as t-th one, ft, has an uncertainty in the form of (Γ − [Γ]) f̄t. The uncertainty 

set based on the adjustable conservatism approach for an SCLP is defined as: 

The above set is of all indices having uncertainty and ⌈|ξj|⌉ is the smallest integer number equal to or greater 

than |ξj|. To guarantee a feasible solution and to prevent the violation of j-th constraint, the sum of all the 

uncertain parameters of that constraint should have perturbation at most equal to Γ parameter, i.e. 

∑ ⌈|ξj|⌉j∈J ≤ Γ.𝛤 introduces a ratio of the number of uncertain parameters in Constraint 6. According to UΓ  

structure, and for each fj̃ ∈ [fj − fj, fj + fj] and maximum perturbation of t-th parameter, (Γ − [Γ]) f̄t, we have: 

The last equality in Relation (23) is written based on the non-negative nature of ft and fj parameters as well as 

the binary nature of xj’s. The robust counterpart model based on the uncertainty set for the SCLP is in the 

form of Problem (5): 

Problem (5) is nonlinear. It transforms to a nominal problem, if Γ = 0 in Constraint 24, and it converts to 

Problem (1) (Soyster model), if Γ = |UΓ |. Furthermore, for an integer Γ, the expression (Γ − [Γ]) in Constraint 

zj, yj ≥ 0. (21) 

UΓ = {j ∈ J: fj̃ = fj + ξjfj: ∑⌈|ξj|⌉

j∈J

≤ Γ, |ξj| ≤ ε}. (22) 

∑ fj̃

j

xj = ∑ (fj + ξjfj)

j∈UΓ

xj ≤ ∑ fjxj

j

+ ε ∑ fj

j∈UΓ

|xj|

≤ ∑ fjxj

j

+ ε max
{(S,t)|S⊆UΓ ,|S|=[Γ],t∈UΓ \S}

{∑ fjxj + (Γ − [Γ])ftxt

j∈S

}. 

(23) 

Min  τ . 
s. t. (2), (3), (5) 

∑ fj

n

j=1

xj + ε max
{(S,t)|S⊆UΓ ,|S|=[Γ],t∈UΓ \S}

{∑ fjxj + (Γ − [Γ])ftxt

j∈S

} ≤ τ. 
(24) 
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  24 vanishes and max

{(S,t)|S⊆UΓ ,|S|=[Γ],t∈UΓ \S}
{∑ fjxj

∗
j∈S } is used to protect j-th constraint and to guarantee a feasible 

robust answer.  

To reformulate the problem in the form of a linear optimization one, consider the following proposition. 

Proposition 3. Assume that the non-negative variable x∗ is the optimum solution of Eq. (25); then x∗ would 

be the feasible solution of the Problem (6), as well Eqs. (25)-(28). 

Proof: the optimum solution of Problem (6) includes [Γ] number of zi’s equal to one and a variable equal to 

Γ − [Γ]. Hence, the optimum solution of the Problem (6)  is selected from the set of {(S, t)|S ⊆ UΓ , |S| =

[Γ], t ∈ UΓ \S} so that the objective function of Eq. (25) is maximized. Therefore, the two Problem (6)  and 

(i) have the same optimum solutions.  

In order to find the linear equivalent form of Problem (5), we discuss the duality of Problem (6). For this 

purpose, consider the dual variables corresponding to Constraints (27) and (28) as y and pj, respectively. So 

the duality of Problem (6) may be written as: 

According to Proposition 3, Problem (6)  is feasible, so regarding the strong duality, Problem (7) is also feasible. 

Furthermore, based on Proposition 3, β (x∗, Γ) value is equal to the value of the objective function of Problem 

(7). The Problem (8)  is resulted by replacing the objective function of dual Problem (7)  with 

max
{(S,t)|S⊆UΓ ,|S|=[Γ],t∈UΓ \S}

{∑ fjxj + (Γ − [Γ])ftxjj∈S } in Constraint (26) and adding Constraints (30)-(32) to Problem 

(6). Problem (8) is called the robust counterpart of USCLP under uncertainty in the fixed establishment 

costs. 

β (x∗, Γ) = max
{(S,t)|S⊆UΓ ,|S|=[Γ],t∈UΓ \S}

{∑ fj|xj
∗| + (Γ − [Γ])ftxj

∗

j∈S

}. (25) 

 β (x∗, Γ) = Max ∑ fjxj
∗zj

j∈UΓ

. (26) 

s. t ∑ zj

j∈UΓ

≤ Γ. (27) 

0 ≤ zj ≤ 1. (28) 

Min  ∑ pj

j∈UΓ

+ Γy. (29) 

s. t   y + pj ≥ fjxj
∗. 

j ∈ UΓ . 
(30) 

pj ≥ 0. 
j ∈ UΓ . 

(31) 

y ≥ 0. (32) 

Min   τ. 
s. t.  

(33) 

∑ fj

j

xj + ε (Γy + ∑ pj

j∈UΓ

) ≤ τ. (34) 

y + pj ≥ fj. 

 j ∈ UΓ . 
y ≥ 0. 

(35) 

pj ≥ 0. (36) 
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In the rest of the paper, the robust counterpart models of MPSCLP under uncertainty in the fixed 

establishment cost parameters are discussed. 

4|Robust Counterpart Models for Uncertain Multi-Period Set 

Covering Location Problem 

In multi-period or dynamic models, it is assumed that one or some of the parameters vary over various 

planning times. Due to budget limitations in the real world problems, there should be some plans applicable 

to various periods. The model parameters are defined as in Section 3. T denotes the time periods, 

fjt parameter is the establishment cost of facility in location j in t-th period and aijt assignment parameter 

equals one, if client i ∈ I can be covered by a facility located in j ∈ J in period (t = 1, . . . , T), and zero 

otherwise. Furthermore, xjt is the decision variable of the problem being one if a facility is located at a 

candidate center j ∈ J in period (t = 1, . . . , T), and zero otherwise. The mathematical model of MPSCLP is 

defined as follows: 

The objective function and constraints are defined as in Section 3, with consideration of the time period 

parameter. Here, it is also assumed that the fixed establishment costs in t’th time period,representede by fjt̃, 

have uncertainty. So, to prevent appearance of an uncertain paremeter in the objective function of Problem 

(9), it is transferred to a distinct constraint. For this purpose, the objective function expression is placed in 

a distinct constraint equal and smaller than a variable τt, for example. Since the new objective function is the 

minimized sum of τt values and ∑ fjt̃xjtj∈J  is equal and smaller than τt, the minimization of τt’s sum results 

in Problem (9). Definition of objective function and constraints are similar to Section 3, considering time 

period parameters. The equivalent Problem (9), similar to USCLP, is formulated as follows: 

The Problem (10)  is called the uncertain MPSCLP and it is assumed that fjt ̃is an uncertain parameter taking 

randomly values from the interval of [fjt − fjt, fjt + fjt]. According to Subsection 3.1, the uncertain box space 

for Problem (10) is defined as: 

Analogous to Subsection 3.1, the robust counterpart of MPSCLP under uncertainty in the fixed 

establishment costs is as follows: 

j ∈ UΓ . 

Min        ∑ ∑ fjt

j∈J

xjt.

T

t=1

 (37) 

s. t          ∑ aijt

j∈J

xjt ≥ 1,    i ∈ I, t = 1, . . . , T. (38) 

xjt ∈ {0,1}j ∈ J, t = 1, . . . , T. (39) 

Min         ∑ τt

T

t=1

. 

s. t. Eqs. (38), (39) 

∑ fjt̃xjt ≤ τt

j∈J

t = 1, . . . , T. 

(40) 

τt ≥ 0.     

t = 1, . . . , T. 
(41) 

Ut
B = {j ∈ J: fjt̃ = fjt + ξjtfjt, |ξjt| ≤ ε}t = 1, . . . , T. (42) 
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The single-period model analogous to Propositions 1-3 is confirmed for multi-period models. According to 

Subsection 3.2, the ellipsoidal uncertainty space under uncertainty in the fixed facility establishment cost 

parameters over t’th period is introduced as: 

As in Subsection 3.2, by defining two non-negative variables yit and zit, the robust counterpart model for 

uncertain MPSCLP based on uncertainty set Eq. (44) is in the form of Problem (12): 

Similar to Subsection 3.3, uncertainty set for uncertain MPSCLP can be defined as: 

According to Subsection 3.3, the linear robust counterpart model for uncertain MPSCLP based on 

conservatism by adjustment approach would be in the form of Problem (13): 

Min        ∑ τt

T

t=1

. 

s. t. Eqs. (38), (39), (41) 

∑ fjtxjt

j∈J

+ ε ∑ fjtxjt

j∈Ut
B

≤ τtt = 1, . . . , T. 

(43) 

Ut
E = {j ∈ J: fjt̃ = fjt + ξjtfjt, ∑ ξjt

2 ≤ Ω2

j∈J

} t = 1, . . . , T. (44) 

Min          ∑ τt

T

t=1

. 

s. t. Eq. (38), (39), (41) 

 

E E
t t

2 2
jt jt jt jt jt tjt

j J j U j U

f x ε f y Ω z τ t 1,...,Tf
  

 
+ +  = 

  
    (45) 

xjt − zjt ≤ yjt. 

j ∈ J, t = 1, . . . , T. 
(46) 

zjt, yjt ≥ 0. 
j ∈ J, t = 1, . . . , T. 

(47) 

Ut
Γ = {j ∈ J: fjt̃ = fjt + ξjtfjt, ∑⌈|ξjt|⌉

j∈J

≤ Γt, |ξjt| ≤ ε} t = 1, . . . , T. (48) 

Min      ∑ τt.

T

t=1

 

s. t. Eqs. (38), (39), (41) 

 

∑ fjtxjt

j∈J

+ ε (Γtyt + ∑ pjt

j∈Ut
Γ

) ≤ τtt = 1, . . . , T. (49) 

yt + pjt ≥ fjtyjt. 
j ∈ J, t = 1, . . . , T. 

(50) 

yt ≥ 0. 
t = 1, . . . , T. 

(51) 

pjt ≥ 0. 
j ∈ J, t = 1, . . . , T. 

(52) 
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  5|Comparison and Analysis of Calculated Results  

Here, the performances of robust counterpart models of SPSCLP and MPSCLP are compared in two 

separate sections. For a better comparison, the data in OR-Library are used with 507 and 582 demand points 

and 50 and 100 demand points random data. The results are presented with four decimal digits. The 

computational experiments were carried out on an Intel (R) core (TM) i5 − 4300M processor with 8GB of 

RAM using version 25.0.2 of GAMS software and CPLEX one. 

5.1|Comparison and Analysis of Calculated Results of Uncertain Set 

Covering Location Problem  

In this section, the performances of the robust counterpart models and the nominal models of SCLP are 

compared. For this purpose, the nominal Model (1) is compared with its three robust counterpart Models (3), 

(4) and (8). To calculate fj̃, ε is assumed to be 0.5 and ξj parameter is randomly constructed. For a better 

analysis, the robust counterpart models with fj = 0,1 ∗ fj  and fj = 0,01 ∗ fj are evaluated. The results of 

numerical samples with the given parameters for random samples and OR-Library data are presented in ten 

columns of Tables 1 and 2, respectively.  

The first left column represents the calculation method of fj parameter with respect to the nominal value 

and the second column shows the number of demand points. The optimum value of the model’s objective 

function (OPT), time in second (CPU), relative error compared to the nominal error (ERROR) and the 

number of facilities to cover the demand points in the solution of each model for the intended sample are 

given in the third column.  

The fourth and fifth columns present the objective function values obtained by solving the nominal Model 

(1) and the robust counterpart model P3 with the box approach, respectively. The sixth column shows the 

function values are obtained with the ellipsoidal approach Problem (4). The seventh to tenth columns list 

the objective function values obtained based on the adjustable conservatism approach Problem (8) with the 

conserving level of Γ = 0.25,0.5,0.75,1, respectively. 

Γ defines the relative number of uncertain parameters in Relation (6). Since GAMS software is not capable 

of ellipsoidal models calculation for the samples of OR-Library, to discuss the accuracy and performance of 

the model, the results are considered for random samples, first. The analysis of the results obtained by 

solving random samples and OR-Library data are discussed in the following. 

Table 1. Computational results of model 𝐏𝟏and robust counterpart models 𝐏𝟑, 

𝐏𝟒 and 𝐏𝟖 for random samples. 

 

 

 

 

 

 

 

 

 

 

𝐟𝐣 
Demand Information for 

Solving the Model 
Model 
Type 

𝐏𝟏 𝐏𝟑 𝐏𝟒 𝐏𝟖 

𝚪 = 𝟎, 𝟐𝟓 𝚪 = 𝟎, 𝟓 𝚪 = 𝟎, 𝟕𝟓 𝚪 = 𝟏 

0,1
∗ fj 

 
 
50 

OPT  133,0000 141,2500 134,1970 134,2500 135,5000 136,7500 138,0000 
CPU 0,0000 0,0160 0,0000 0,0000 0,1500 0,0000 0,0150 
ERROR 0,0000 0,0620 0,0090 0,0093 0,0188 0,0282 0,0376 
number of facilities 
to cover demand 
points 

4 3 4 4 4 4 4 

 
 
100 

OPT 34,0000 34,5840 34,0000 34,8500 35,7000 36,5500 37,4000 
CPU 0,0310 0000 0,0160 0,0320 0,0000 0,0160 0,0160 
ERROR 0,0000 0,0172 0,0000 0,0250 0,0500 0,0750 0,1000 
number of facilities 
to cover demand 
points 

1 1 1 1 1 1 1 

 

 

 

 

0,01
∗ fj 

 
 
50 

OPT  133,0000 140,1250 133,1200 133,1250 133,2500 133,3750 133,5000 
CPU 0,0000 0,0000 0,0160 0,0000 0,0160 0,0160 0,0150 
ERROR 0,0000 0,0536 0,0009 0,0009 0,0019 0,0028 0,0038 
number of facilities 
to cover demand 
points 

4 3 4 4 4 4 4 

 
 
100 

OPT 34,0000 34,0580 34,0000 34,0850 34,1700 34,2550 34,3400 
CPU 0,0310 0,0160 0,0160 0,0160 0,0000 0,0160 0,0160 
ERROR 0,0000 0,0017 0,0000 0,0025 0,0050 0,0075 0,0100 
number of facilities 
to cover demand 
points 

1 1 1 1 1 1 1 
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  Table 2. Computational results of model 𝐏𝟏 and robust counterpart models 𝐏𝟑, 𝐏𝟒 and 𝐏𝟖 for 

OR-Library samples. 

 

 

The results in Tables 1 and 2 bring about the following conclusions. According to the results obtained of 

Tables 1 and 2 these items are concluded.  

I. As expected, the box approach is strongly conserving; therefore, its objective function value is more than 

those of the nominal model and the robust counterpart model with the adjustable conservatism approach. 

The box approach has more performance time and relative error with respect to other robust counterpart 

models. On average, the number of selected facilities in the box model is less than that of the nominal 

model.  

II. The ellipsoidal model has an objective function closer to the nominal model. Furthermore, for the tentative 

samples with 50 and 100 demand points, the objective function value of the ellipsoidal approach is closer 

to the nominal model compared with the adjustable conservatism and box approaches. For random samples, 

the ellipsoid model results in better answers close to the nominal problem and consequently of less 

robustness with respect to other robust counterpart models. In addition, the ellipsoidal model, owing to its 

nonlinear form, does not present plausible answers for large size samples. The ellipsoidal approach has more 

CPU time and less relative error than the nominal problem compared with the other robust counterpart 

models compared to. 

III. The optimized answers of the adjustable conservatism approach is closer to the objective function value of 

the nominal problem compared with the box approach. Moreover, for the tentative samples, the objective 

function value of the adjustable conservatism approach, is more distant from the nominal SCLP value by 

increasing the conserving level (increasing Γ). On average, by increasing the conserving level, the adjustable 

conservatism approach has more performance time and more relative error compared with other robust 

counterpart models. 

IV. By decreasing the uncertainty interval from 0,1 ∗ fj to 0,01 ∗ fj, the objective function values of the robust 

counterpart models approach those of the nominal model. 

5.2|Results of Multi-Period Set Covering Location Problem 

In this section, the performance of nominal model P9 is compared with the robust counterpart Models (11)-

(13). Furthermore, for a better comparison, the tentative samples and their parameters are considered similar 

to those for the single-period problems. The nominal value of the fixed establishment costs in four time 

periods is also assumed as ft = αtf where αt = 0/5,1/25,1/75,2/5 in the four time periods, respectively. It 

means that the fixed establishment costs in the first period are half of their nominal value. 

In the second period, the fixed establishment costs are 1.25 times of the primary value. The fixed 

establishment costs in the third and fourth periods change also to 1.75 and 2.5 times of the primary value. 

The nominal values of the fixed establishment costs are its exact and specified value. In this case, the fixed 

establishment costs are considered ascending and incremental. In the following, for a better comparison of 

𝐟𝐣 
Demand Model Type 

 
Information for 
Solving the Model 

𝐏𝟏 𝐏𝟑 𝐏𝟒 𝐏𝟖 

𝚪 = 𝟎, 𝟐𝟓 𝚪 = 𝟎, 𝟓 𝚪 = 𝟎, 𝟕𝟓 𝚪 = 𝟏 

 

0,1 ∗ fj 507 

OPT 177,0000 186,1500 -------- 187,0500 187,1000 187,1500 187,2000 
CPU 0,4380 6,8910 -------- 5,4060 5,6090 5,4210 5,4380 
ERROR 0,0000 0,0517 -------- 0,0568 0,0570 0,0573 0,0576 
Number of facilities to cover demand points 116 120 -------- 125 125 125 125 

0,1 ∗ fj 582 

OPT 218,0000 230,8750 -------- 216,0500 216,1000 216,1500 216,2000 
CPU 0,4220 4,2500 -------- 4,5150 4,0940 4,0780 4,1870 
ERROR 0,0000 0,0590 -------- 0,0089 0,0087 0,0084 0,0082 
Number of facilities to cover demand points 164 165 -------- 161 161 161 161 

0,01 ∗ fj  
 
507 

OPT 177,0000 185,1200 -------- 187,0050 187,0100 187,0150 187,0200 
CPU 0,4380 5,5150 -------- 5,3750 5,3750 5,3590 5,6720 
ERROR 0,0000 0,0459 -------- 0,0565 0,0565 0,0566 0,0566 
Number of facilities to cover demand points 116 122 -------- 125 125 125 125 

582 OPT 218,0000 218,2420 -------- 216,0050 216,0100 216,0150 216,0200 
CPU 0,4220 3,9690 -------- 4,2190 4,2190 4,2500 4,0780 
ERROR 0,0000 0,0011 -------- 0,0091 0,0091 0,0091 0,0091 
Number of facilities to cover demand points 161 161 -------- 161 161 161 161 
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  the results, the fixed establishment costs of irregular changes over different time periods, i,e. αt =

2/5,3/7,0/5,1/3, are studied in addition to those of αt = 1/8,2,2/2,2/4. 

Tables 3-5 present the variation of the uncertain fixed establishment parameters over time periods of αt =

0/5,1/25,1/75,2/5, αt = 2/5,3/7,0/5,1/3  and αt = 1/8,2,2/2,2/4, respectively. The first left column 

introduces the intended sample and the second one includes the information necessary for solving the 

model. To solve each model for the intended sample, as in Table 1, the optimum value of the model’s 

objective function (OPT), solution time in second (CPU), its relative error compared to the nominal error 

(ERROR), the number of facilities covering demand points in each period and its robust counterpart models 

are presented here.  

The third column shows the objective function value obtained by solving the nominal Problem (1). The 

fourth to seventh columns present the resulting variation obtained from the nominal models considering 

the uncertain fixed establishment cost parameters for time periods αt = 0/5,1/25,1/75,2/5 (Table 3), αt =

2/5,3/7,0/5,1/3 (Table 4) and αt = 1/8,2,2/2,2/4 (Table 5). The eighth, ninth and tenth columns exhibit the 

objective function values of the nominal Problem (9), robust counterpart Model (11) and the robust 

counterpart Model (12), respectively. 

The eleventh to fourteenth columns present the objective function value obtained by solving the multi-

period problem based on the adjustable conservatism approach with conserving level of Γ = 0.25,0.5,0.75,1, 

respectively. As for the single-period model, GAMS software is unable to perform the ellipsoidal model 

calculations for ORL-ibrary real data. The random samples applied in Table 1 are used to study the solution 

process of the robust counterpart models and also the accuracy of the results. 

Table 3. Results obtained by solving models 𝐏𝟏, 𝐏𝟗 and robust counterpart models 𝐏𝟏𝟏, 𝐏𝟏𝟐 and 𝐏𝟏𝟑 for 𝛂𝐭 =

𝟎/𝟓, 𝟏/𝟐𝟓, 𝟏/𝟕𝟓, 𝟐/𝟓 time periods based on random samples and OR-Library data. 

Demand Model Type 
 
 
 
 
 
Information for 
Solving the 
Model 

𝐏𝟏 Results of Solving Exact Models 𝐏𝟏 with 𝐟𝐭 =
𝛂𝐭𝐟 
 

𝐏𝟗 𝐏𝟏𝟏 𝐏𝟏𝟐 𝐏𝟏𝟑 

𝛂𝟏 = 𝟎/𝟓 𝛂𝟐

= 𝟏/𝟐𝟓 
𝛂𝟑

= 𝟏/𝟕𝟓 
𝛂𝟒

= 𝟐/𝟓 
𝚪
= 𝟎, 𝟐𝟓 

𝚪 = 𝟎, 𝟓 𝚪
= 𝟎, 𝟕𝟓 

𝚪 = 𝟏 

50 OPT 133,0000 133,0000 133,0000 266,0000 399,0000 266,0000 332,5000 277,9740 278,5000 291,0000 303,5000 316,0000 
CPU 0,0000 0,0000 0,0000 0,7190 0,0160 0,0160 0,0150 0,0160 0,0160 0,0150 0,2660 0,1560 
ERROR 0,0000 0,5000 0,5000 0,0000 0,5000 0,0000 0,2500 0,0450 0,0470 0,0940 0,1410 0,1880 
Number of 
facilities to cover 
demand points 

4 4 4 4 4 4 4 4 4 4 4 4 

100 OPT 34,0000 34,0000 34,0000 68,0000 102,0000 68,0000 85,0000 73,8390 76,5000 85,0000 93,5000 102,0000 
CPU 0,0310 1,7190 1,7190 0,0160 0,0630 1,7190 1,7190 0,0160 0,0000 0,0160 0,0160 0,0180 
ERROR 0,0000 0,5000 0,5000 0,0000 0,5000 0,0000 0,2500 0,0859 0,1250 0,2500 0,3750 0,5000 
Number of 
facilities to cover 
demand points 

1 1 1 1 1 1 1 1 1 1 1 1 

507 OPT 177,0000 177,0000 177,0000 354,0000 558,0000 295,0000 394,5000 ----------- 298,5000 299,0000 299,5000 300,0000 

CPU 0,4380 0,6720 0,6410 0,4370 1,3290 0,5160 0,6100 ----------- 0,9380 1,0150 1,1870 1,9690 

ERROR 0,0000 0,4000 0,4000 0,2000 0,8915 0,0000 0,3373 ----------- 0,0119 0,0135 0,0152 0,0169 

Number of 
facilities to cover 
demand points 

116 116 116 116 123 108 111 ----------- 109 109 109 109 

582 OPT 218,0000 218,0000 218,0000 436,0000 648,0000 410,0000 556,0000 ----------- 414,5000 415,0000 415,5000 420,0000 
CPU 0,4220 0,5000 1,4690 0,4680 0,4370 0,5620 0,4530 ----------- 0,7810 0,7960 0,7660 0,8130 
ERROR 0,0000 0,4682 0,4682 0,0634 0,5805 0,0000 0,3561 ----------- 0,0110 0,0122 0,0134 0,0244 
Number of 
facilities to cover 
demand points 

164 163 163 163 160 159 158 ----------- 162 162 162 163 
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  Table 4. Results obtained by solving models 𝐏𝟏, 𝐏𝟗 and robust counterpart models 𝐏𝟏𝟏, 𝐏𝟏𝟐 and 𝐏𝟏𝟑 for 𝛂𝐭 =

𝟐/𝟓, 𝟑/𝟕, 𝟎/𝟓, 𝟏/𝟑 time periods based on random samples and OR-Library data. 

 

Table 5. Results obtained by solving models 𝐏𝟏, 𝐏𝟗 and robust counterpart models 𝐏𝟏𝟏, 𝐏𝟏𝟐 and 𝐏𝟏𝟑 for 𝛂𝐭 =

𝟏/𝟖, 𝟐, 𝟐/𝟐, 𝟐/𝟒 time periods based on random samples and OR-Library data. 

Demand Model Type 
 
 
Information 
for 
Solving the 
Model 

𝐏𝟏 Results of Solving Exact Models 𝐏𝟏 

with 𝐟𝐭 = 𝛂𝐭𝐟 

𝐏𝟗 𝐏𝟏𝟏 𝐏𝟏𝟐 𝐏𝟏𝟑 

𝛂𝟏

= 𝟐/𝟓 

𝛂𝟐

= 𝟑/𝟕 

𝛂𝟑

= 𝟎/𝟓 

𝛂𝟒

= 𝟏/𝟑 

𝚪
= 𝟎, 𝟐𝟓 

𝚪 = 𝟎, 𝟓 𝚪
= 𝟎, 𝟕𝟓 

𝚪 = 𝟏 

50 OPT 133,0000 399,0000   532,0000   133,0000   133,0000   333,0000   433,0000   350,9900   351,7500   370,5000   389,2500   408,0000   
CPU 0,0000 0,0000 0,0000 0,0150 0,0150 0,0470 0,0470 0,0940 0,0150 0,0000 0,0000 0,0160 
ERROR 0,0000 0,1982 0,5976 0,6006 0,6006 0,0000 0,3003 0,0540 0,0563 0,1126 0,1689 0,2252 
number of 
facilities to 
cover demand 
points 

4 4 4 4 4 4 4 4 4 4 4 4 

100 OPT 34,0000 102,0000   136,0000   34,0000   34,0000   85,0000   110,5000   93,7590   97,7500   110,5000   123,2500   136,0000   
CPU 0,0310 0,0000 0,0160 0,0160 0,0160 0,1090 0,0160 0,1570 0,0000 0,0160 0,0160 0,0150 

ERROR 0,0000 0,2000 0,6000 0,6000 0,6000 0,0000 0,3000 0,1030 0,1500 0,3000 0,4500 0,6000 

number of 
facilities to 
cover demand 
points 

1 1 1 1 1 1 1 1 1 1 1 1 

507 OPT 177,0000 558,0000   708,0000   177,0000   177,0000   483,0000   632,5000   ----------- 488,7500   489,5000   490,2500   491,0000   

CPU 0,4380 0,4530 0,5780 0,4840 0,5460 0,6410 0,4530 ----------- 0,8600 0,8750 0,8440 0,8280 

ERROR 0,0000 0,1553 0,4658 0,6335 0,6335 0,0000 0,3095 ----------- 0,0119 0,0134 0,0150 0,0166 

number of 
facilities to 
cover demand 
points 

116 123 116 116 116 113 110 ----------- 112 112 112 112 

582 OPT 218,0000 648,0000   868,0000   218,0000   218,0000   605,0000   778,0000   ----------- 601,7500   602,5000   603,2500   619,0000   

CPU 0,4220 0,437 0,4370 0,4220 0,4370 0,4370 0,4690 ----------- 0,7970 0,7810 1,1090 0,8440 

ERROR 0,0000 0,0711 0,4347 0,6397 0,6397 0,0000 0,2860 ----------- 0,0054 0,0041 0,0029 0,0231 

Number of 
facilities to 
cover demand 
points 

164 160 162 163 163 149 147 ----------- 149 149 149 152 

Demand Model Type 
 
 
Information 
for 
Solving the 
Model 

𝐏𝟏 Results Of Solving Exact Models 𝐏𝟏 

with 𝐟𝐭 = 𝛂𝐭𝐟 
 

𝐏𝟗 𝐏𝟏𝟏 𝐏𝟏𝟐 𝐏𝟏𝟑 

𝛂𝟏

= 𝟏/𝟖 

𝛂𝟐 = 𝟐 𝛂𝟑

= 𝟐/𝟐 

𝛂𝟒

= 𝟐/𝟒 

𝚪
= 𝟎, 𝟐𝟓 

𝚪 = 𝟎, 𝟓 𝚪
= 𝟎, 𝟕𝟓 

𝚪 = 𝟏 

50 OPT 133,0000 239,4000 266,0000 292,6000 319,2000 279,3000 299,2500 282,8920 283,0500 286,8000 290,5500 294,3000 
CPU 0,0000 0,5620 0,0000 0,0470 0,5930 0,0160 0,0160 0,0150 0,0150 0,0160 0,0470 0,0160 
ERROR 0,0000 0,1429 0,0476 0,0476 0,1429 0,0000 0,0714 0,0547 0,0134 0,0268 0,0403 0,0537 
Number of 
facilities to 
cover demand 
points 

4 4 4 4 4 4 4 4 4 4 4 4 

100 OPT 34,0000 61,2000 68,0000 74,8000 81,6000 71,4000 76,5000 73,1520 73,9500 76,5000 79,0500 81,6000 
CPU 0,0310 0,4380 0,0150 0,0160 0,0150 0,0160 0,0000 0,0150 0,0000 0,0150 0,0160 0,0150 
ERROR 0,0000 0,1429 0,0476 0,0476 0,1429 0,0000 0,0714 0,0245 0,0357 0,0714 0,1071 0,1428 
Number of 
facilities to 
cover demand 
points 

1 1 1 1 1 1 1 1 1 1 1 1 

507 OPT 177,0000 329,4000 354,0000 400,4000 453,6000 386,4000 409,5000 ----------- 386,5500 386,7000 386,8500 387,0000 
CPU 0,4380 0,4530 0,4530 0,4680 0,5460 0,4380 0,4840 ----------- 1,2810 0,8910 0,9210 1,6250 
ERROR 0,0000 0,1475 0,0838 0,0362 0,1739 0,0000 0,0598 ----------- 0,00039 0,00078 0,0012 0,0015 
Number of 
facilities to 
cover demand 
points 

116 119 116 120 124 120 119 ----------- 123 123 123 123 

582 OPT 218,0000 388,8000 436,0000 475,2000 518,4000 457,8000 488,2500 ----------- 451,6500 451,8000 451,9500 454,2000 
CPU 0,4220 0,4370 1,3440 0,4380 1,0160 0,5930 0,4530 ----------- 0,8750 1,7660 0,8130 0,8120 
ERROR 0,0000 0,1507 0,01476 0,0380 0,1324 0,0000 0,0665 ----------- 0,0134 0,0131 0,0127 0,0079 
Number of 
facilities to 
cover demand 
points 

164 162 163 163 161 162 162 ----------- 161 161 161 161 
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The first three results of single-period models are similarly established here. In particular, for the multi-

period problems, the data in Tables 3, 4 and 5 result in the following conclusions: 

I. The values of the objective function model of the nominal problem for various time periods are close to that 

of the period with least variations. Since the objective function values for smaller time periods are rather 

similar, so the optimum answer in a smaller time period is acceptable. 

II. Furthermore, the multi-period nominal problem with 𝛼𝑡 = 0/5,1/25,1/75,2/5 time period, has a smaller 

uncertain interval compared to 𝛼𝑡 = 2/5,3/7,0/5,1/3. In addition, since each uncertain interval is considered 

symmetrical in 𝛼𝑡 = 1/8,2,2/2,2/4 time period, the objective function value of the multi-period nominal 

problem is closer to the middle period. 

6|Conclusion 

Concerning the uncertainty in parameters, applying nominal models may result in unreliable answers. To 

deal with this problem and to obtain a more realistic model, a robust optimization approach may be useful. 

In this research, at first, an uncertain SCLP under uncertainty in the fixed establishment costs was studied 

with the robust optimization approach. Then, this problem was considered dynamically over various time 

periods. Furthermore, these multi-period and single-period nominal models were compared with the robust 

counterpart models based on the box approach, ellipsoidal approach and the adjustable conservatism one.  

According to the obtained results, the box approach is strongly conserving and its objective function value 

is farther from that of the nominal models compared to those of the adjustable conservatism adjustment 

and ellipsoidal approaches. Also, it was observed that, the objective function value of the adjustable 

conservatism approach with more conserving level is more distant from that of the nominal problem. 

Among the three robust optimization approaches, the ellipsoidal one has closer objective function value to 

that of the nominal problem model with respect to the box and adjustable conservatism approaches. The 

multi-period problems were explored over various time periods and it was observed that their order being 

ascending, descending and irregular has no effect on the selection of uncertain interval. So, the objective 

function value of the nominal problems in uncertain intervals is closer to the middle period. In order to 

complete the models proposed in this research, one may consider other uncertain parameters. In addition, 

for the proposed models of this research getting closer to the real world situations, one can consider some 

other parameters such as opening and closing cost of facilities during various time periods or maintenance 

cost of facilities. As another proposal, the robust counterpart models may be solved by other exact or 

approximate methods for optimization problems calculations. 
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