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Abstract

In recent years, covering location problems, owing to their numerous applications, have attracted significant
attention. Since to the presence of uncertainty in real world data, in this paper a Single-Period Set Covering Location
Problem (SPSCLP) as well as a Multi-Period Set Covering Location Problem (MPSCLP) under uncertainty in fixed
establishment cost parameter are discussed by robust optimization approach. Various robust optimization
approaches such as box approach, ellipsoidal approach and conservatism by adjustment approach are developed to
this end. The robust counterparts of SPSCLP and MPSCLP are presented and then OR-Library dataset are used to

analyze the models.

Keywords: Single-period set covering location problem, Multi-period set covering location problem, Uncertainty,
Robust optimization.

1| Introduction

The Set Covering Location Problem (SCLP) is one of the classical and important location problems first
developed by Toregas et al. [1]. The aim of this problem is to find the minimum number (or least
establishment cost) of facilities among potential facilities, so that each demand point is covered at least by
one facility. In the classical set covering problem, the assignment of clients is specified by distance between
facilities and clients. Karp [2] proved that the SCLP is NP-Hard. This problem can be applied to determine
the location of emergency medical centers [3] or hospitals [4] and schedule the aitline crew [5], [6], for
instances. A review about this problem’s applications can be found in [7], [8]. While the static problems deal
only with a single-period, the dynamic ones concern planning over various time periods. In multi-period

models, planning for a location to establish facilities or capacity of facilities in each period, are often

Corresponding Author: sam.rezvani513@gmail.comjfea
d  https://doi.org/10.48314/anowa.v1il.54

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative
@G) Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).


mailto:dastam66@gmail.com
mailto:sam.rezvani513@gmail.com
https://doi.org/10.48314/anowa.v1i1.54
http://www.anowa.reapress.com/
mailto:sam.rezvani513@gmail.com
mailto:f.moeen@ub.ac.ir
mailto:z.dadi@ub.ac.ir
https://orcid.org/0000-0002-5358-0710
https://orcid.org/0000-0002-0422-0743
https://orcid.org/0000-0002-4288-1956

51 Rezvani | Ann. Optim. Appl. 1(1) (2025) 50-65

considered, so that the time dimension is usually specified by a time-dependent variable. Multi-period
location problem is essential when assignment costs, number of demands change during planning horizon.
In this research, fixed establishment cost parameters in SCLP are assumed to change over various time
periods.

Incorporating different aspects of uncertainty is also a main challenge in the real world situations. Some of
the data and parameters of practical problems are not often precisely known. So, the uncertainty may not
bring about the desirable optimum solution. Some of the common reasons for uncertainty are prediction
error, measurement error and implementation error. In a facility location problem, for instance, the number
of client demands, the radius of covering, inventory amount in stores, the 38 time and cost of travel may
not be exactly specified. There are different approaches for optimization under uncertainty including
stochastic approach [9], grey system [10], fuzzy optimization [3], probabilistic approach [11], Bayesian
method [12], uncertainty theory [13] and robust optimization [14].

In this paper, the Multi-and Single-Period Set Covering Location Problems (SPSCLP, MPSCLP) under
uncertainty in fixed establishment costs is discussed through the robust optimization approach. Here, we
present the hard worst case and soft worst approaches. The introduced models are solved for OR-Library
data by the CPLEX solver. In the rest of the paper, a brief literature review on multi- and single-period
SCLPs is firstly presented in Section 2. Section 3 provides a mathematical model for SCLP and its robust
counterpart models. A mathematical model for MPSCLP and its robust counterpart are introduced in
Section 4. The comparison and analysis of the calculated results are presented in Section 5. Finally, the

conclusions and suggestions for potential future researches are given in Section 6.
2| Literature Review

The literature review on Uncertain Set Covering Location Problem (USCLP) is presented in Subsection 2.1.
Subsection 2.2 summarizes researches concerning multi-period SCLP and finally a brief review on USCLP

based on robust optimization approach is presented in Subsection 2.3.
2.1| Set Covering Location Problem

Beraldi and Ruszczynski [15] considered a stochastic approach to study SCLP under uncertainty in constraint
and proposed branch and bound algorithm to solve their model. Hwang [16] studied SCLP with the
assumption of uncertainty in constraint by the fuzzy optimization approach. Chiang et al. [17] investigated
the SCLP through the fuzzy approach. Saxena et al. [18] modelled the probabilistic SCLP under uncertainty
in constraint and solved it by the cutting plane algorithm. Ahmed and Georgiou [7] studied the probabilistic
SCLP under uncertainty caused by overcrowding; they applied a stochastic optimization approach and used
some reliable inequalities to solve their model.

2.2 | Multi- and Single-Period Set Covering Location Problems

When the problem parameters vary over time, it is better to plan for more than one period. This results in
a multi-period or dynamic location problem with parameters changing over time periods. A multi-period
location problem is necessary as the problem parameters change over the planning horizon. Gunawardane
[19] proposed a multi-period model for an SCLP to minimize the uncovered demands. He also took into
account the possibilities that an open facility gets closed a closed one gets open before the end of the time
period.

2.3 | Uncertain Set Covering Location Problem with Robust Optimization
Approach

Several approaches have been proposed to deal with uncertainty. One of them is the robust optimization
approach where for each problem containing uncertain parameters, a robust model is proposed; this is called
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the robust counterpart which would be solved instead of the main problem [20]. The robust optimization
includes the hard worst case approach [21], [14], soft worst one [22], [23] and the realistic approach [24],
[25] whose details can be found in Refs. [22], [20]. Pereira and Averbakh [27] discussed a probabilistic SCLP
under uncertainty in the establishment costs of facilities with a scenario-based robust optimization approach.
They used Benders decomposition method and a combination of Genetic and branch and bound algorithms
to solve their proposed model. Lutter et al. [28] studied an uncertain probabilistic SCLP for emergency
services and solved it based on a combination of robust optimization and probabilistic optimization

approaches using the cutting plane algorithm.

3| Robust Counterpart Model for Uncertain Set Covering Location
Problem

To introduce the mathematical model of the USCLP and its counterpart, consider that the set of demand
points and the set of potential location candidates for establishing facilities are denoted by I and J,
respectively. Moreover, let f; be the establishment cost of facilities in location j € ], aj; be the assignment
parameter which is equal to one if the client i € Ican be covered by a facility in location j € ], and zero
otherwise. The x; is considered as the decision variable of the problem which is equal to one if a candidate

location can provide service, and zero otherwise. The mathematical model is as follows [1].

Min z f]- X]-. (1)

i€]

s.t.

Z ai]- Xj = 1, i€l (2)
<] _

x; € {0,1}, jE]J. 3)

The objective function in Eg. (7) minimizes the establishment cost of facilities. The Constraint (2) guarantees
that each client is covered by at least one facility. The definition domain of decision variable x;is illustrated
in Constraint (3). Problem (1) is called, nominal set covering problem and it is NP-Hard [2]. Here, the fixed
establishment costs f;’s are assumed to be uncertain. So, the equivalent form of Problem (1) under

uncertainty in the fixed establishment cost parameter can be rewriten as Problem (2):

Min T

s.t. (2), 3) @
J€]

T=0.

The Problem (2) is called the USCLP. The f~] is an uncertain parameter taking random values in the interval
of [fj — f_j, f; + E] where Eaﬂd fj are the maximum non-negative perturbation and the nominal value of the

uncertain parameter, respectively. Therefore, ] is defined as follows.

f=f+5f. (©)
Here, & being a stochastic parameter is the perturbation factor which varies in the interval of [—1,1]. For

the facilities with the fixed establishment cost, Eis assumed to be zero.
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3.1| Robust Counterpart Model of Set Covering Location Problem Based on
Soyster Approach

The first robust optimization model was proposed in 1973 by Soyster [22]. Despite the perturbation in the
uncertain parameters in the interval of [—1,1], this model guarantees the robustness of the solutions. The
solutions obtained by this model are consetvative, i.e their robustness is guaranteed but the optimization of
the main problem is lost greatly [22], [21]. Concerning the uncertain fixed establishment cost parameters, if
|| takes values between 0 to £(0 < € < 1), the sharing space of n perturbations forms an n-dimensional
cube called the uncertainty box space due to its geometrical shape. For the Problem (2), the uncertainty box
space is described as:

P ={e)f=f+3f

§| <<} ™

The uncertain set Eq. (7) enforces the stochastic variables & to be less than €. For each f| € [f; — Fj, f; + F]],

we have

D fx,<  max {Zf X, }=max{§(fj +§jf_j)xj}- ®)

ieJ HE f ff+f gje[—l,l]

According to UB structure and |E]-| < g we have

max{ (f +Ef )x } 2.fx, +EZ‘fJXJ‘ =Dt e ) Bl |=Dofx e D B, (&)
ge-11] j jeu® i jeu j jeu"

where the last equality has been written considering the non-negative nature of F] parameter and x; variable.
So, the robust counterpart model based on the uncertainty set Eq. (7) for a USCLP would be in the form of
Problem (3):

Min T
s.t. (2), 3), (5

_ 10

i€l jeu®
The Constraint (4) will be also satistied by satistaction of Constraint (10). Constraint (4) will be satistied by
satistying Constraint (10).

Proposition 1. The optimum solution of the robust counterpart Mode/ (3) is a feasible solution for the
equivalent Problem (2).

Proof: assume that x* is the optimum solution of the robust counterpart optimized model Problem (3). So
according to Relation (10), we have

fo +e )

]EUB

*
X;

<T

)

Based on E. €[-1,1]and -1 < § < 1, one concludes that f] > fj— sf and f] <fi+ sf i.e. the uncertain

parameter of the problem, f}, varies in the interval of [f; — j,fj + f]] The x" is a feasible answer and robust

in the uncertain interval, since:

ZF]X Zflxl+82f]x Zf]x]+sz
j

]EUB ]EUB

*

<T (12)

The last inequality is written according to the feasible and non-negative nature of x*.
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3.2| Robust Counterpart Model of Uncertain Set Covering Location
Problem Based on Ben-Tall and Nemirovski Approach

Criticizing the very conservative approach of Soyster, Ben-Tall and Nemirovski [29] stated that in an
uncertain optimization problem, the possibility that all the uncertain parameters have their worst value
simultaneously is very low. El-Ghaoui and Lebert [30] as well as Ben-Tall and Nemirovski [29] tried to
improve the objective function value by reducing the uncertainty set and through the partial reduction of
robustness. In the ellipsoidal approach, the uncertainty space for the fixed establishment cost parameters is
introduced as follows.

UE =Jje)f =1+ Ejf_j,z.;?snz . 3)

i€l
The set UEis an ellipse; according to its structure, for each f; € [f] - F],f] + F]], we have
zf] Xj = Z (6 +§f) x; < Z fixj +e Z f ] (14)
j jeuE j jeuE

Two non-negative variables y; and z; are defined as 0 < x; < z; +y; and fand zare the vectors including

fand z;, respectively, i.c. f=(f,f....fn) and z = (z;,2,,...2,). Since x; < z; + y;:
fx, <z +Fy; = ijx,-s Zf,-zj+2f,-yj_ as)
jeuE jeuE jeuE

Also, we know that

(16)

17)

To obtain a feasible solution for the worst situation, i.e. Relation (17), regarding the non-negative behavior
of x;j variable, by defining two new variables, we have:

fo +st\ \_fo +{nyj+§2 /ijz ] (18)

Moreover, if X; = 0, Relation (18) is also established. The robust counterpart model for USCLP based on the
uncertainty Set Eg. (73) is in the form of Problem (4):

Min T.
s.t. Egs. (2), 3), (5)

J%:fx +£[J§ny+Q f};fz ]<’L’ (0)

Xj —Zj < y]

19)
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2,y,2 0. @)

The model Problem (4) is nonlinear. The advantage of the ellipsoid model over the box one is its less
conservatism, however the final model is nonlinear and can not be solved through the methods applied to
the discrete optimization problems [22].

Proposition 2. The solution of the robust counterpart Problem (4) is a feasible solution for the equivalent
problem P,.

Proof: it followed from Relations (14) and (78).

The adjustable conservatism approach for a USCLP under uncertainty in the fixed facility establishment cost
parameters is discussed in the following

3.3| Robust Counterpart Model for Uncertain Set Covering Location Problem
based on Bertsimas and Sim Approach

Bertsimas and Sim [22] introduced another uncertainty set with adjustable robustness. In this approach,
I parameter, being not necessarily an integer, is used to adjust the robustness of the answers against their
conserving level. The robust optimization approach guarantees the worst state. To prevent the violation of
uncertain constraints, the uncertain parameters can vary in some intervals. In this method, it is assumed that
at most [I'] number of parameters have uncertainty according to Re/ation (6) and the maximum perturbation

of only another parameter such as t-th one, f., has an uncertainty in the form of (I' — [[']) f;. The uncertainty
set based on the adjustable conservatism approach for an SCLP is defined as:

U" =i enf =6 +55 ) [l5)

j€J

| <ep (22)

The above set is of all indices having uncertainty and ”EJ H is the smallest integer number equal to or greater
than |Ej | To guarantee a feasible solution and to prevent the violation of j-th constraint, the sum of all the
uncertain parameters of that constraint should have perturbation at most equal to I parameter, i.ec.

Z]-E]”Ej H < I'.T introduces a ratio of the number of uncertain parameters in Constraint 6. According to ur

structure, and for each f] € [fj - f_]-, fi + F]] and maximum perturbation of t-th parameter, (I’ — [I']) f;, we have:

Zﬁxi = Z (6 + &) x; Szfixj te Z fy x|
]. .

jeul j jeul
(23)

fix;+¢ Z 4+ (T — f.X; b
Z ) {(St)|5cur |S| [r]teUF\s (= [MDfix,

The last equality in Relation (23)is written based on the non-negative nature of f, and F] parameters as well as
the binary nature of x;’s. The robust counterpart model based on the uncertainty set for the SCLP is in the
form of Problem (5):

Min T

s.t. (2), (3), 5

j=1
Problem (5) is nonlinear. It transforms to a nominal problem, if T = 0in Constraint 24, and it converts to

Problem (1) (Soyster model), if I = [U" |. Furthermore, for an integer T, the expression (I' — [I']) in Constraint
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24 vanishes and {Zies ?]x]* } is used to protect j-th constraint and to guarantee a feasible

max
{(sv)|scul |s|=[r]teu’ \s}
robust answet.

To reformulate the problem in the form of a linear optimization one, consider the following proposition.

Proposition 3. Assume that the non-negative variable X" is the optimum solution of Eg. (25); then x* would
be the feasible solution of the Problem (6), as well Egs. (25)-(25).

x* ) = max ZFX-* + (T = [TDfx; b 25
B G0 ((spls<uTIsI=Irlteu” \s) | &2 i1+ (= MDA 23)
jeul
jeul

Proof: the optimum solution of Problem (6) includes [I'] number of z;’s equal to one and a variable equal to
I — [[]. Hence, the optimum solution of the Problem (6) is selected from the set of {(S,t)|S € UT,|S| =
[[],t € UT\S} so that the objective function of Egq. (25) is maximized. Therefore, the two Problem (6) and

(i) have the same optimum solutions.

In order to find the linear equivalent form of Problem (5), we discuss the duality of Problem (6). For this
purpose, consider the dual variables corresponding to Constraints (27) and (28) as y and pj, respectively. So
the duality of Problem (6) may be written as:

jeuT
s.t y+p; Zf_jx;‘.
30
jeu’. ©0)
i = 0.
o (3
j .
y > 0. (32)

According to Proposition 3, Problem (6) is feasible, so regarding the strong duality, Problem (7) is also feasible.
Furthermore, based on Proposition 3, (x*,T) value is equal to the value of the objective function of Problem
(7). The Problem (8) is resulted by replacing the objective function of dual Problem (7) with

{(s,t)|sgurr,g?§[r],teur \s}{Z"ES fx; + (U — [[Dfix;} in Constraint (26) and adding Constraints (30)-(32) to Problem

(6). Problem (8)1is called the robust counterpart of USCLP under uncertainty in the fixed establishment

COSts.

Min T. (33)

s.t
ijxj+s Fy+ij <t 34)
J j

ey’
y +pj = .
jeul. (35)
y = 0.
b0 30
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jeul,
In the rest of the paper, the robust counterpart models of MPSCLP under uncertainty in the fixed

establishment cost parameters are discussed.

4| Robust Counterpart Models for Uncertain Multi-Period Set
Covering Location Problem

In multi-period or dynamic models, it is assumed that one or some of the parameters vary over various
planning times. Due to budget limitations in the real world problems, there should be some plans applicable
to various periods. The model parameters are defined as in Section 3.T denotes the time periods,
fit parameter is the establishment cost of facility in location j in t-th period and ajj; assignment parameter
equals one, if client i € I can be covered by a facility located in j € Jin period (t=1,...,T), and zero
otherwise. Furthermore, x;.is the decision variable of the problem being one if a facility is located at a
candidate center j € Jin period (t = 1,...,T), and zero otherwise. The mathematical model of MPSCLP is

defined as follows:

T
Min > ) e 37)

t=1 j€J

s.t zai]‘tht21, iEI,tzl,...,T. (38)
i€]

xi €{0,1}j€Lt=1,...,T. 39

The objective function and constraints are defined as in Section 3, with consideration of the time period
parameter. Here, it is also assumed that the fixed establishment costs in t’th time period,representede byﬂf;,
have uncertainty. So, to prevent appearance of an uncertain paremeter in the objective function of Problem
(9), it is transferred to a distinct constraint. For this purpose, the objective function expression is placed in
a distinct constraint equal and smaller than a variable tt, for example. Since the new objective function is the
minimized sum of 1t values and ¢ ﬂvtx]-t is equal and smaller than T, the minimization of t,’s sum results
in Problem (9). Definition of objective function and constraints are similar to Section 3, considering time

period parameters. The equivalent Problem (9), similar to USCLP, is formulated as follows:

T

Min Z Tt

t=1
s.t. Egs. (38), (39) (40)
Zthth <tut=1,...,T.
€l
T = 0.

41

t=1,...,T. 41

The Problem (10) is called the uncertain MPSCLP and it is assumed that f;is an uncertain parameter taking

randomly values from the interval of [f]-t - f]-_t, fie + f]_t] According to Subsection 3.1, the uncertain box space
for Problem (10) is defined as:

U‘?:{jel:f;t:fjt‘i‘zjta.lzjdSS}’C= 1,...,T. (42)

Analogous to Subsection 3.1, the robust counterpart of MPSCLP under uncertainty in the fixed

establishment costs is as follows:
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T

Min z Tt

s.t. Egs. E§§>, (39), (41) 43)

zfjtxjt t+e z Exit <tt=1,...,T.
j€l jeuB
The single-period model analogous to Propositions 1-3 is confirmed for multi-period models. According to

Subsection 3.2, the ellipsoidal uncertainty space under uncertainty in the fixed facility establishment cost

parameters over t’th period is introduced as:

Uf = je]:f]vtzfjt‘i'gjtfjt:zgjztgﬂz t=1,...,T. (44)
j€J

As in Subsection 3.2, by defining two non-negative variables y;; and zj, the robust counterpart model for

uncertain MPSCLP based on uncertainty set Eg. (44) is in the form of Problem (12):

T

Min Z Tt

t=1
s.t. Eq. (38), (39), (41)

— —2
Zfﬁxjt —H{Zfﬁyjt +Q ZZfﬁZ;}STt t=1,..T (45)
jel jeuy jeut

Xjt — Zjt < Vijt. 46
jelt=1,...,T. ( )
jelt=1,...,T.

Similar to Subsection 3.3, uncertainty set for uncertain MPSCLP can be defined as:

Ul =4j €l:fe =fic + ejtfjt,zﬂz,-tﬂ ST g <ept=1...,T (48)
i€l

According to Subsection 3.3, the linear robust counterpart model for uncertain MPSCLP based on

conservatism by adjustment approach would be in the form of Problem (13):

T

Min z T,

s.t. Eqs.t ?318), (39), (41)

Z fth]'t + € Ftyt + Z p]t < Ttt = 1, ceay T. (49)
j€l jeut

Yt + Pjt 2 fieyje. (50)
jeLt=1,..,T.

> 0.
t= 1. )
o>
pjt = 0. (52)

jelt=1,...,T.
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5| Comparison and Analysis of Calculated Results

Here, the performances of robust counterpart models of SPSCLP and MPSCLP are compared in two
separate sections. For a better comparison, the data in OR-Library are used with 507 and 582 demand points
and 50 and 100 demand points random data. The results are presented with four decimal digits. The
computational experiments were carried out on an Intel (R) core (TM) i5 — 4300M processor with 8GB of
RAM using version 25.0.2 of GAMS software and CPLEX one.

5.1| Comparison and Analysis of Calculated Results of Uncertain Set
Covering Location Problem

In this section, the performances of the robust counterpart models and the nominal models of SCLP are
compared. For this purpose, the nominal Mode/ (1) is compared with its three robust counterpart Models (3),
(4)and (8). To calculate f, € is assumed to be 0.5 and & parameter is randomly constructed. For a better

analysis, the robust counterpart models with F]-= 0,1 = f; and F]-= 0,01 = f; are evaluated. The results of
numerical samples with the given parameters for random samples and OR-Library data are presented in ten
columns of Tables 1 and 2, respectively.

The first left column represents the calculation method of F] parameter with respect to the nominal value
and the second column shows the number of demand points. The optimum value of the model’s objective
function (OPT), time in second (CPU), relative error compared to the nominal error (ERROR) and the
number of facilities to cover the demand points in the solution of each model for the intended sample are

given in the third column.

The fourth and fifth columns present the objective function values obtained by solving the nominal Mode/
(1) and the robust counterpart model P; with the box approach, respectively. The sixth column shows the
function values are obtained with the ellipsoidal approach Problem (4). The seventh to tenth columns list
the objective function values obtained based on the adjustable conservatism approach Problem (8) with the

conserving level of I' = 0.25,0.5,0.75,1, respectively.

I defines the relative number of uncertain parameters in Relation (6). Since GAMS software is not capable
of ellipsoidal models calculation for the samples of OR-Library, to discuss the accuracy and performance of
the model, the results are considered for random samples, first. The analysis of the results obtained by
solving random samples and OR-Library data are discussed in the following.

Table 1. Computational results of model P;and robust counterpart models P,

P, and Pg for random samples.

f_j Demand  Information for Model Py P3 Py Pg
Solving the Model Type r=0,25 r=0,5 r=0,75 r=1
0,1 OPT 133,0000 141,2500  134,1970  134,2500 135,5000  136,7500 138,0000
* f] CPU 0,0000 0,0160 0,0000 0,0000 0,1500 0,0000 0,0150
50 ERROR 0,0000 0,0620 0,0090 0,0093 0,0188 0,0282 0,0376
number of facilities 4 3 4 4 4 4 4
to cover demand
points
OPT 34,0000 34,5840 34,0000 34,8500 35,7000 36,5500 37,4000
CPU 0,0310 0000 0,0160 0,0320 0,0000 0,0160 0,0160
100 ERROR 0,0000 0,0172 0,0000 0,0250 0,0500 0,0750 0,1000
number of facilities 1 1 1 1 1 1 1
to cover demand
points
OPT 133,0000 140,1250 133,1200 133,1250 133,2500 133,3750 133,5000
CPU 0,0000 0,0000 0,0160 0,0000 0,0160 0,0160 0,0150
50 ERROR 0,0000 0,0536 0,0009 0,0009 0,0019 0,0028 0,0038
number of facilities 4 3 4 4 4 4 4
0,01 to cover demand
* f] points
OPT 34,0000 34,0580 34,0000 34,0850 34,1700 34,2550 34,3400
CPU 0,0310 0,0160 0,0160 0,0160 0,0000 0,0160 0,0160
100 ERROR 0,0000 0,0017 0,0000 0,0025 0,0050 0,0075 0,0100
number of facilities 1 1 1 1 1 1 1

to cover demand
points
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Table 2. Computational results of model P; and robust counterpart models P3, P, and Pg for
OR-Library samples.

Fi Demand Model Type Py P3 P, Pg
r=025 r=05 r=075 Ir=1
Information for
Solving the Model
OPT 177,0000  186,1500  -------- 187,0500 187,1000  187,1500 187,2000
0,1 f; 507 CPU 0,4380 6,8910 e 5,4060 5,6090 5,4210 5,4380
ERROR 0,0000 0,0517  —meeee 0,0568 0,0570 0,0573 0,0576
Number of facilities to cover demand points 116 120 - 125 125 125 125
OPT 218,0000  230,8750  -------  216,0500 216,1000  216,1500 216,2000
0.1 %Ff 580 CPU 0,4220 4,2500 - 4,5150 4,0940 4,0780 4,1870
! ) ERROR 0,0000 0,0590 - 0,0089 0,0087 0,0084 0,0082
Number of facilities to cover demand points 164 165 161 161 161 161
0,01 * f; OPT 177,0000  185,1200 187,0050 187,0100  187,0150 187,0200
CPU 0,4380 5,5150 5,3750 5,3750 5,3590 5,6720
507 ERROR 0,0000 0,0459 0,0565 0,0565 0,0566 0,0566
Number of facilities to cover demand points 116 122 125 125 125 125
582 OPT 218,0000  218,2420  -------- 216,0050 216,0100  216,0150 216,0200
CPU 0,4220 39690 e 4,2190 4,2190 4,2500 4,0780
ERROR 0,0000 0,0011 ———-- 0,0091 0,0091 0,0091 0,0091
Number of facilities to cover demand points 161 161 - 161 161 161 161

The results in Tables 1 and 2 bring about the following conclusions. According to the results obtained of

Tables 1 and 2 these items are concluded.

II.

III.

IVv.

As expected, the box approach is strongly conserving; therefore, its objective function value is more than
those of the nominal model and the robust counterpart model with the adjustable conservatism approach.
The box approach has more performance time and relative error with respect to other robust counterpart
models. On average, the number of selected facilities in the box model is less than that of the nominal
model.

The ellipsoidal model has an objective function closer to the nominal model. Furthermore, for the tentative
samples with 50 and 100 demand points, the objective function value of the ellipsoidal approach is closer
to the nominal model compared with the adjustable conservatism and box approaches. For random samples,
the ellipsoid model results in better answers close to the nominal problem and consequently of less
robustness with respect to other robust counterpart models. In addition, the ellipsoidal model, owing to its
nonlinear form, does not present plausible answers for large size samples. The ellipsoidal approach has more
CPU time and less relative error than the nominal problem compared with the other robust counterpart
models compared to.

The optimized answers of the adjustable conservatism approach is closer to the objective function value of
the nominal problem compared with the box approach. Moreover, for the tentative samples, the objective
function value of the adjustable conservatism approach, is more distant from the nominal SCLP value by
increasing the conserving level (increasing I'). On average, by increasing the conserving level, the adjustable
conservatism approach has more performance time and more relative error compared with other robust

counterpart models.

By decreasing the uncertainty interval from 0,1 * f; to 0,01 * fj, the objective function values of the robust

counterpart models approach those of the nominal model.

5.2| Results of Multi-Period Set Covering Location Problem

In this section, the performance of nominal model Py is compared with the robust counterpart Models (11)-

(13). Furthermore, for a better comparison, the tentative samples and their parameters are considered similar

to those for the single-period problems. The nominal value of the fixed establishment costs in four time

petiods is also assumed as f; = of where oy = 0/5,1/25,1/75,2/5 in the four time petiods, respectively. It

means that the fixed establishment costs in the first period are half of their nominal value.

In the second period, the fixed establishment costs are 1.25 times of the primary value. The fixed

establishment costs in the third and fourth periods change also to 1.75 and 2.5 times of the primary value.

The nominal values of the fixed establishment costs are its exact and specified value. In this case, the fixed

establishment costs are considered ascending and incremental. In the following, for a better comparison of
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the results, the fixed establishment costs of irregular changes over different time periods, ie. oy =
2/5,3/7,0/5,1/3, are studied in addition to those of a; = 1/8,2,2/2,2/4.

Tables 3-5 present the variation of the uncertain fixed establishment parameters over time periods of oy =
0/5,1/251/75,2/5, o =2/5,3/7,0/51/3 and oy = 1/8,2,2/2,2/4, respectively. The first left column
introduces the intended sample and the second one includes the information necessary for solving the
model. To solve each model for the intended sample, as in Table 1, the optimum value of the model’s
objective function (OPT), solution time in second (CPU), its relative error compared to the nominal error
(ERROR), the number of facilities covering demand points in each period and its robust counterpart models
are presented here.

The third column shows the objective function value obtained by solving the nominal Problem (1). The
fourth to seventh columns present the resulting variation obtained from the nominal models considering
the uncertain fixed establishment cost parameters for time periods o, = 0/5,1/25,1/75,2/5 (Table 3), o, =
2/5,3/7,0/51/3 (Table 4) and o, = 1/8,2,2/2,2/4 (Table 5). The eighth, ninth and tenth columns exhibit the
objective function values of the nominal Problem (9), robust counterpart Mode/ (17) and the robust
counterpart Mode/ (12), respectively.

The eleventh to fourteenth columns present the objective function value obtained by solving the multi-
period problem based on the adjustable conservatism approach with conserving level of I' = 0.25,0.5,0.75,1,
respectively. As for the single-period model, GAMS software is unable to perform the ellipsoidal model
calculations for ORL-ibrary real data. The random samples applied in Table 7 are used to study the solution

process of the robust counterpart models and also the accuracy of the results.

Table 3. Results obtained by solving models Py, Py and robust counterpart models P4, Py, and Py3 for a; =
0/5,1/25,1/75,2/5 time petiods based on random samples and OR-Library data.

Demand

odel Type Py Results of Solving Exact Models P; with fy = Py Pyq Py, Py3

o f
o; =0/5 o, o3 oy r r=0,>5 r r=1
=1/25 =1/75 =2/5 =0,25 =0,75

Information\for
Solving the
Model

50 OPT 133,0000  133,0000 133,0000  266,0000  399,0000  266,0000  332,5000  277,9740  278,5000 291,0000  303,5000 316,0000
CPU 0,0000 0,0000 0,0000 0,7190 0,0160 0,0160 0,0150 0,0160 0,0160 0,0150 0,2660 0,1560
ERROR 0,0000 0,5000 0,5000 0,0000 0,5000 0,0000 0,2500 0,0450 0,0470 0,0940 0,1410 0,1880
Number of 4 4 4 4 4 4 4 4 4 4 4 4
facilities to cover
demand points

100 OPT 34,0000 34,0000 34,0000 68,0000 102,0000 68,0000 85,0000 73,8390 76,5000 85,0000 93,5000 102,0000
CPU 0,0310 1,7190 1,7190 0,0160 0,0630 1,7190 1,7190 0,0160 0,0000 0,0160 0,0160 0,0180
ERROR 0,0000 0,5000 0,5000 0,0000 0,5000 0,0000 0,2500 0,0859 0,1250 0,2500 0,3750 0,5000
Number of 1 1 1 1 1 1 1 1 1 1 1 1
facilities to cover
demand points

507 OPT 177,0000  177,0000 177,0000  354,0000  558,0000  295,0000  394,5000 298,5000 299,0000  299,5000 300,0000
CPU 0,4380 0,6720 0,6410 0,4370 1,3290 0,5160 0,6100 0,9380 1,0150 1,1870 1,9690
ERROR 0,0000 0,4000 0,4000 0,2000 0,8915 0,0000 0,3373 0,0119 0,0135 0,0152 0,0169
Number of 116 116 116 116 123 108 111 - 109 109 109 109
facilities to cover
demand points

582 OPT 218,0000  218,0000 218,0000  436,0000  648,0000  410,0000  556,0000 414,5000 415,0000  415,5000 420,0000
CPU 0,4220 0,5000 1,4690 0,4680 0,4370 0,5620 0,4530 - 0,7810 0,7960 0,7660 0,8130
ERROR 0,0000 0,4682 0,4682 0,0634 0,5805 0,0000 0,3561 0,0110 0,0122 0,0134 0,0244
Number of 164 163 163 163 160 159 158 - 162 162 162 163

facilities to cover
demand points
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Table 4. Results obtained by solving models Py, Py and robust counterpart models P;4, P;; and P;3 for oy =
2/5,3/7,0/5,1/3 time periods based on random samples and OR-Library data.

Demand  Model Type Py Results of Solving Exact Models Py Py Py Py; Py3
with fy = a,f
Information oy o o3 oy r r=o05 T r=1
for =2/5 =3/7 =0/5 =1/3 =0,25 =0,75
Solving the
Model
50 OPT 133,0000 399,0000 532,0000 133,0000 133,0000 333,0000 433,0000 350,9900 351,7500 370,5000 389,2500 408,0000
CPU 0,0000 0,0000 0,0000 0,0150 0,0150 0,0470 0,0470 0,0940 0,0150 0,0000 0,0000 0,0160
ERROR 0,0000 0,1982 0,5976 0,6006 0,6006 0,0000 0,3003 0,0540 0,0563 0,1126 0,1689 0,2252
number of 4 4 4 4 4 4 4 4 4 4 4 4
facilities to
cover demand
points
100 OPT 34,0000 102,0000 136,0000 34,0000 34,0000 85,0000 110,5000 93,7590 97,7500 110,5000 123,2500 136,0000
CPU 0,0310 0,0000 0,0160 0,0160 0,0160 0,1090 0,0160 0,1570 0,0000 0,0160 0,0160 0,0150
ERROR 0,0000 0,2000 0,6000 0,6000 0,6000 0,0000 0,3000 0,1030 0,1500 0,3000 0,4500 0,6000
number of 1 1 1 1 1 1 1 1 1 1 1 1
facilities to
cover demand
points
507 OPT 177,0000  558,0000  708,0000  177,0000  177,0000  483,0000  632,5000  ---------—- 488,7500  489,5000  490,2500  491,0000
CPU 0,4380 0,4530 0,5780 0,4840 0,5460 0,6410 04530 e 0,8600 0,8750 0,8440 0,8280
ERROR 0,0000 0,1553 0,4658 0,6335 0,6335 0,0000 0,3095  ——me- 0,0119 0,0134 0,0150 0,0166
number of 116 123 116 116 116 113 10 112 112 112 112
facilities to
cover demand
points
582 OoPT 218,0000  648,0000  868,0000  218,0000  218,0000  605,00+0  778,0000  ---------e- 601,7500  602,5000  603,2500  619,0000
CPU 0,4220 0,437 0,4370 0,4220 0,4370 0,4370 0,4690 e 0,7970 0,7810 1,1090 0,8440
ERROR 0,0000 0,0711 0,4347 0,6397 0,6397 0,0000 0,2860  ——eee- 0,0054 0,0041 0,0029 0,0231
Number of 164 160 162 163 163 149 147 - 149 149 149 152
facilities to
cover demand
points
Table 5. Results obtained by solving models Py, Py and robust counterpart models Py, Py, and Py3 for a; =
1/8,2,2/2,2/4 time periods based on random samples and OR-Library data.
Demand  Model Type Py Results Of Solving Exact Models Py Py Py Pz Py3
with f; = o f
Information o =2 a3 ay T r=05 T r=1
for =1/8 =2/2 =2/4 =0,25 =0,75
Solving the
Model
50 OPT 133,0000  239,4000  266,0000  292,6000  319,2000  279,3000  299,2500  282,8920  283,0500  286,8000  290,5500  294,3000
CPU 0,0000 0,5620 0,0000 0,0470 0,5930 0,0160 0,0160 0,0150 0,0150 0,0160 0,0470 0,0160
ERROR 0,0000 0,1429 0,0476 0,0476 0,1429 0,0000 0,0714 0,0547 0,0134 0,0268 0,0403 0,0537
Number of 4 4 4 4 4 4 4 4 4 4 4 4
facilities to
cover demand
points
100 OPT 34,0000 61,2000 68,0000 74,8000 81,6000 71,4000 76,5000 73,1520 73,9500 76,5000 79,0500 81,6000
CPU 0,0310 0,4380 0,0150 0,0160 0,0150 0,0160 0,0000 0,0150 0,0000 0,0150 0,0160 0,0150
ERROR 0,0000 0,1429 0,0476 0,0476 0,1429 0,0000 0,0714 0,0245 0,0357 0,0714 0,1071 0,1428
Number of 1 1 1 1 1 1 1 1 1 1 1 1
facilities to
cover demand
points
507 OPT 177,0000 329,4000 354,0000 400,4000 453,6000 386,4000 409,5000  ------eee- 386,5500 386,7000 386,8500 387,0000
CPU 0,4380 0,4530 0,4530 0,4680 0,5460 0,4380 0,4840 1,2810 0,8910 0,9210 1,6250
ERROR 0,0000 0,1475 0,0838 0,0362 0,1739 0,0000 0,0598 B - 000039 000078 0,012 0,0015
Number of 116 119 116 120 124 120 119 123 123 123 123
facilities to
cover demand
points
582 OPT 218,0000 388,8000 436,0000 475,2000 518,4000 457,8000 488,2500 451,6500 451,8000 451,9500 454,2000
CPU 0,4220 0,4370 1,3440 0,4380 1,0160 0,5930 0,4530 0,8750 1,7660 0,8130 0,8120
ERROR 0,0000 0,1507 0,01476 0,0380 0,1324 0,0000 0,0665 0,0134 0,0131 0,0127 0,0079
Number of 164 162 163 163 161 162 162 161 161 161 161

facilities to
cover demand
points
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The first three results of single-period models are similatly established here. In particular, for the multi-
period problems, the data in Tables 3, 4 and 5 result in the following conclusions:

1. The values of the objective function model of the nominal problem for various time periods are close to that
of the period with least variations. Since the objective function values for smaller time periods are rather

similar, so the optimum answer in a smaller time petiod is acceptable.

II. Furthermore, the multi-period nominal problem with a, = 0/5,1/25,1/75,2/5 time period, has a smaller
uncertain interval compated to @y = 2/5,3/7,0/5,1/3. In addition, since each uncertain interval is considered
symmetrical in a, = 1/8,2,2/2,2/4 time period, the objective function value of the multi-period nominal
problem is closer to the middle period.

6 | Conclusion

Concerning the uncertainty in parameters, applying nominal models may result in unreliable answers. To
deal with this problem and to obtain a more realistic model, a robust optimization approach may be useful.
In this research, at first, an uncertain SCLP under uncertainty in the fixed establishment costs was studied
with the robust optimization approach. Then, this problem was considered dynamically over various time
periods. Furthermore, these multi-period and single-period nominal models were compared with the robust

counterpart models based on the box approach, ellipsoidal approach and the adjustable conservatism one.

According to the obtained results, the box approach is strongly conserving and its objective function value
is farther from that of the nominal models compared to those of the adjustable conservatism adjustment
and ellipsoidal approaches. Also, it was observed that, the objective function value of the adjustable
conservatism approach with more conserving level is more distant from that of the nominal problem.
Among the three robust optimization approaches, the ellipsoidal one has closer objective function value to
that of the nominal problem model with respect to the box and adjustable conservatism approaches. The
multi-period problems were explored over various time periods and it was observed that their order being
ascending, descending and irregular has no effect on the selection of uncertain interval. So, the objective
function value of the nominal problems in uncertain intervals is closer to the middle period. In order to
complete the models proposed in this research, one may consider other uncertain parameters. In addition,
for the proposed models of this research getting closer to the real wotld situations, one can consider some
other parameters such as opening and closing cost of facilities during various time periods or maintenance
cost of facilities. As another proposal, the robust counterpart models may be solved by other exact or
approximate methods for optimization problems calculations.
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